日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知數列{an}中,a1=3,a2=5,其前n項和Sn滿足Sn+Sn-2=2Sn-1+2n-1(n≥3).令bn=
1
anan+1

(Ⅰ)求數列{an}的通項公式;
(Ⅱ)若f(x)=2x-1,求證:Tn=b1f(1)+b2f(2)+…+bnf(n)<
1
6
(n≥1).
分析:(Ⅰ)由題意知an=an-1+2n-1(n≥3)(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2=2n+1.
(Ⅱ)由于bnf(n)=
1
(2n+1)(2n+1+1)
-2n-1
=
1
2
(
1
2n+1
-
1
2n+1+1
)
.故Tn=b1f(1)+b2f(2)+…+bnf(n)
=
1
2
[(
1
1+2
-
1
1+22
)+(
1
1+22
-
1
1+23
)+…+
(
1
2n+1
-
1
2n+1+1
)]
,由此可證明Tn=b1f(1)+b2f(2)+…+bnf(n)<
1
6
(n≥1).
解答:解:(Ⅰ)由題意知Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3)
即an=an-1+2n-1(n≥3)
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2
=2n-1+2n-2+…+22+5
=2n+1(n≥3)
檢驗知n=1、2時,結論也成立,故an=2n+1.
(Ⅱ)由于bnf(n)=
1
(2n+1)(2n+1+1)
-2n-1

=
1
2
-
(2n+1+1)-(2n+1)
(2n+1)(2n+1+1)

=
1
2
(
1
2n+1
-
1
2n+1+1
)

故Tn=b1f(1)+b2f(2)+…+bnf(n)
=
1
2
[(
1
1+2
-
1
1+22
)+(
1
1+22
-
1
1+23
)+…+
(
1
2n+1
-
1
2n+1+1
)]

=
1
2
(
1
1+2
-
1
2n+1+1
)  <
1
2
-
1
1+2
=
1
6
點評:本題考查數列的性質和綜合應用,解題時要認真審題.仔細解答.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數列{an}的通項公式;
(2)求數列{
2n
an
}
的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1=
1
2
Sn
為數列的前n項和,且Sn
1
an
的一個等比中項為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}中,a1=1,2nan+1=(n+1)an,則數列{an}的通項公式為(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 亚洲成人综合视频 | 国产一区 | 一级在线免费视频 | 欧美在线免费 | 精品亚洲视频在线观看 | 久久99精品久久久久久久青青日本 | 国产视频一区二区 | 国产一级特黄aaa大片 | a在线观看 | 羞羞视频网站 | 大尺度cosplay福利裸 | 天天夜夜操| 夜夜艹日日艹 | 日韩欧美在线免费观看 | 中文字幕在线观看 | 黄色影视免费观看 | 成人做爰999 | 久热热热 | 一本色道精品久久一区二区三区 | 成人精品鲁一区一区二区 | 91欧美激情一区二区三区成人 | 精品国产乱码一区二区三区 | 夜夜夜操操操 | 亚洲乱码久久久 | 国产精品自产拍在线观看桃花 | 国产精品美女视频 | 国产午夜久久 | 欧美激情一区二区三区 | 欧美色综合一区二区三区 | 亚洲欧美激情视频 | 午夜免费视频 | 中文字幕 视频一区 | 娇妻被3p高潮爽视频 | 久久精品视频免费看 | 噜噜av | 日韩一区在线视频 | 91tv亚洲精品香蕉国产一区 | 在线国产欧美 | 国产亚洲一区二区在线 | 亚洲免费av电影 | 日韩不卡 |