(本小題滿分12分)
如圖,在長方體
中,
、
分別是棱
,
上的點,
,
求異面直線
與
所成角的余弦值;證明
平面
求二面角的正弦值。
【解析】本小題主要考查異面直線所成的角、直線與平面垂直、二面角等基礎知識,考查用空間向量解決立體幾何問題的方法,考查空間想象能力、運算能力和推理論證能力,滿分12分。
方法一:如圖所示,建立空間直角坐標系,
點A為坐標原點,設,依題意得
,
,
,
解:易得,
于是
所以異面直線與
所成角的余弦值為
證明:已知,
,
于是·
=0,
·
=0.因此,
,
,又
所以平面
(3)解:設平面的法向量
,則
,即
不妨令X=1,可得。由(2)可知,
為平面
的一個法向量。
于是,從而
所以二面角的正弦值為
方法二:(1)解:設AB=1,可得AD=2,AA1=4,CF=1.CE=
鏈接B1C,BC1,設B1C與BC1交于點M,易知A1D∥B1C,由
,可知EF∥BC1.故
是異面直線EF與A1D所成的角,易知BM=CM=
,所以
,所以異面直線FE與A1D所成角的余弦值為
(2)證明:連接AC,設AC與DE交點N 因為,所以
,從而
,又由于
,所以
,故AC⊥DE,又因為CC1⊥DE且
,所以DE⊥平面ACF,從而AF⊥DE.
連接BF,同理可證B1C⊥平面ABF,從而AF⊥B1C,所以AF⊥A1D因為,所以AF⊥平面A1ED
(3)解:連接A1N.FN,由(2)可知DE⊥平面ACF,又NF平面ACF, A1N
平面ACF,所以DE⊥NF,DE⊥A1N,故
為二面角A1-ED-F的平面角
易知,所以
,又
所以
,在
連接A1C1,A1F 在
。所以
所以二面角A1-DE-F正弦值為
科目:高中數學 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數學 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經濟增長,某市決定新建一批重點工程,分別為基礎設施工程、民生工程和產業建設工程三類,這三類工程所含項目的個數分別占總數的、
、
.現有3名工人獨立地從中任選一個項目參與建設.求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分12分)
某民營企業生產A,B兩種產品,根據市場調查和預測,A產品的利潤與投資成正比,其關系如圖1,B產品的利潤與投資的算術平方根成正比,其關系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產品的利潤表示為投資的函數,并寫出它們的函數關系式.(2)該企業已籌集到10萬元資金,并全部投入到A,B兩種產品的生產,問:怎樣分配這10萬元投資,才能使企業獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com