【題目】已知函數,
,其中
,
.
(1)當時,求
在點
處切線
的方程;
(2)若函數在區間
上單調遞增,求實數
的取值范圍;
(3)記,求證:
.
科目:高中數學 來源: 題型:
【題目】對于兩個定義域相同的函數f(x),g(x),若存在實數m、n使h(x)=mf(x)+ng(x),則稱函數h(x)是由“基函數f(x),g(x)”生成的.
(1)若f(x)=x2+3x和個g(x)=3x+4生成一個偶函數h(x),求h(2)的值;
(2)若h(x)=2x2+3x﹣1由函數f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范圍;
(3)利用“基函數f(x)=log4(4x+1),g(x)=x﹣1”生成一個函數h(x),使之滿足下列件:①是偶函數;②有最小值1;求函數h(x)的解析式并進一步研究該函數的單調性(無需證明).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設A是單位圓和x軸正半軸的交點,P,Q是單位圓上兩點,O是坐標原點,且 ,∠AOQ=α,α∈[0,π). (Ⅰ)若點Q的坐標是
,求
的值;
(Ⅱ)設函數 ,求f(α)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,有一塊半徑為2的半圓形紙片,計劃剪裁成等腰梯形ABCD的形狀,它的下底AB是⊙O的直徑,上底CD的端點在圓周上,設CD=2x,梯形ABCD的周長為y.
(1)求出y關于x的函數f(x)的解析式;
(2)求y的最大值,并指出相應的x值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四邊形ABCD滿足AD∥BC,BA=AD=DC= BC=a,E是BC的中點,將△BAE沿著AE翻折成△B1AE,使面B1AE⊥面AECD,F,G分別為B1D,AE的中點.
(1)求三棱錐E﹣ACB1的體積;
(2)證明:B1E∥平面ACF;
(3)證明:平面B1GD⊥平面B1DC.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=1﹣ 在R上是奇函數.
(1)求a;
(2)對x∈(0,1],不等式sf(x)≥2x﹣1恒成立,求實數s的取值范圍;
(3)令g(x)= ,若關于x的方程g(2x)﹣mg(x+1)=0有唯一實數解,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列選項中,說法正確的個數是( )
①命題“”的否定為“
”;
②命題“在中,
,則
”的逆否命題為真命題;
③設是公比為
的等比數列,則“
”是“
為遞增數列”的充分必要條件;
④若統計數據的方差為
,則
的方差為
;
⑤若兩個隨機變量的線性相關性越強,則相關系數絕對值越接近1.
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com