科目:高中數學 來源:福建省三明一中2011-2012學年高二第一次月考數學試題 題型:044
(1)用秦九韶算法求多項式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x當x=3時的值.
(2)假設你家訂了份報紙,送報人可能在早上6點-8點之間把報紙送到你家,你每天離家去工作的時間在早上7點-9點之間,求你離家前不能看到報紙(稱事件A)的概率是多少?(須有過程)
查看答案和解析>>
科目:高中數學 來源:學習周報 數學 北師大課標高二版(選修2-2) 2009-2010學年 第28期 總第184期 北師大課標 題型:044
完成下列反證法證題的全過程:已知0<a≤3,函數f(x)=x3-ax在區間[1,+∞)上是增函數,設當x0≥1,f(x0)≥1時,有f(f(x0))=x0,求證:f(x0)=x0.
證明:假設f(x0)≠x0,則必有 ① 或 ② .
若 ③ ,由f(x)在區間[1,+∞)上是增函數,則f(f(x0))>f(x0).
又f(f(x0))=x0,所以f(x0)<x0,這與 ④ 矛盾.
若x0>f(x0)≥1,由f(x)在區間[1,+∞)上是增函數,則 ⑤ .
又f(f(x0))=x0,所以f(x0)>x0,這與 ⑥ 矛盾.
綜上所述,當x0≥1,f(x0)≥1且f(f(x0))=x0時,有f(x0)=x0.
查看答案和解析>>
科目:高中數學 來源:學習周報 數學 北師大課標高二版(選修1-2) 2009-2010學年 第33期 總第189期 北師大課標 題型:044
完成下列反證法證題的全過程:
已知0<a≤3,函數f(x)=x3-ax在區間[1,+∞)上是增函數,設當x0≥1,f(x0)≥1時,有f(f(x0))=x0,求證:f(x0)=x0.
證明:假設f(x0)≠x0,則必有 ① 或 ② .
若 ③ ,由f(x)在區間[1,+∞)上是增函數,則f(f(x0))>f(x0).
又f(f(x0))=x0,所以f(x0)<x0,這與 ④ 矛盾.
若x0>f(x0)≥1,由f(x)在區間[1,+∞)上是增函數,則 ⑤ .
又f(f(x0))=x0,所以f(x0)>x0,這與 ⑥ 矛盾.
綜上所述,當x0≥1,f(x0)≥1且f(f(x0))=x0時,有f(x0)=x0.
查看答案和解析>>
科目:高中數學 來源:2013屆山東省高二下學期3月考試文科數學試卷(解析版) 題型:選擇題
某同學準備用反證法證明如下問題:函數f(x)在[0,1]上有意義,且f(0)=f(1),如果對于不同的x1,x2∈[0,1]都有|f(x1)-f(x2)|<|x1-x2|,求證:|f(x1)-f(x2)|<,那么它的假設應該是( ).
A.“對于不同的x1,x2∈[0,1],都得|f(x1)-f(x2)|<|x1-x2| 則|f(x1)-f(x2)|≥”
B. “對于不同的x1,x2∈[0,1],都得|f(x1)-f(x2)|> |x1-x2| 則|f(x1)-f(x2)|≥”
C.“∃x1,x2∈[0,1],使得當|f(x1)-f(x2)|<|x1-x2| 時有|f(x1)-f(x2)|≥”
D.“∃x1,x2∈[0,1],使得當|f(x1)-f(x2)|>|x1-x2|時有|f(x1)-f(x2)|≥”
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com