日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
8、過點(0,1)作直線,使它與拋物線y2=4x僅有一個公共點,這樣的直線有(  )
分析:當直線為 x=0,或 y=1時,即直線和x軸,y軸垂直時,顯然滿足與拋物線y2=4x僅有一個公共點.當直線的斜率等于k 時,直線方程為 y-1=k(x-0),代入拋物線方程化簡,由判別式等于0解得 k=1,故滿足條件的直線共有3條.
解答:解:由題意可得,當直線為 x=0,或 y=1時,即直線和x軸,y軸垂直時,顯然滿足與拋物線y2=4x僅有一個公共點.
當直線的斜率等于k 時,直線方程為 y-1=k(x-0),代入拋物線y2=4x可得 k2x2+(2k-4)x+1=0,
∴△=(2k-4)2-4k2=0,解得  k=1,故滿足條件的直線共有3條,
故選D.
點評:本題考查直線和圓錐曲線的位置關系,直線和與拋物線相切的條件,體現了分類討論的數學思想,求出滿足條件的直線的斜率,是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知兩點M和N分別在直線y=mx和y=-mx(m>0)上運動,且|MN|=2,動點p滿足:2
OP
=
OM
+
ON
(O為坐標原點),點P的軌跡記為曲線C.
(I)求曲線C的方程,并討論曲線C的類型;
(Ⅱ)過點(0,1)作直線l與曲線C交于不同的兩點A、B,若對于任意m>1,都有∠AOB為銳角,求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

拋物線x2=4y的焦點為F,過點(0,-1)作直線L交拋物線A、B兩點,再以AF、BF為鄰邊作平行四邊形FARB,試求動點R的軌跡方程,并說明曲線的類型.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知半徑為2的圓的圓心C在x軸上,圓心C的橫坐標是非負整數,且與直線4x+3y+10=0相切.
(Ⅰ)求圓C的方程;
(Ⅱ)設直線l:y=kx+1與圓相交于P、Q兩點,若
OP
OQ
=-2,求k的值;
(Ⅲ)已知直線l:y=kx+1,過點(0,1)作直線l1與l垂直,且直線l1與圓C交于M、N兩點,求四邊形PQMN面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓C經過點A(-2,0),B(0,2),且圓心在直線y=x上,且,又直線l:y=kx+1與圓C相交于P、Q兩點.
(I)求圓C的方程;
(II)若
OP
OQ
=-2
,求實數k的值;
(III)過點(0,1)作直線l1與l垂直,且直線l1與圓C交于M、N兩點,求四邊形PMQN面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•邢臺一模)已知兩點M、N分別在直線y=mx與直線y=-mx(m>1)上運動,且|MN|=2.動點P滿足2
OP
=
OM
+
ON
(O為坐標原點),點P的軌跡記為曲線C.
(I)求曲線C的方程;
(II)過點(0,1)作直線l與曲線C交于不同的兩點A、B.若對任意m>1,都有∠AOB為銳角,求直線l的斜率k的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久国产精品久久精品 | 欧美亚洲一 | 97精品超碰一区二区三区 | 天天干一干| 国产精品亚洲一区二区三区 | av在线播放免费 | 国产aaaaav久久久一区二区 | 91麻豆精品国产91久久久久 | 久久精品二区 | 国产一区二区影院 | 99国产视频 | 北条麻妃一区二区三区在线 | 黄色性视频 | 美女黄网站视频免费 | 人人玩人人干 | 精品 99| 国产高清自拍 | 午夜日韩视频 | 精品一区免费 | 久久日韩精品 | 少妇一区二区三区免费观看 | 午夜影院免费观看视频 | 中文字幕 在线观看 | 日韩视频免费看 | 亚洲精品电影在线观看 | 日韩欧美国产网站 | 青青草国产精品 | 色国产一区 | 日韩成人精品在线 | 色5月婷婷丁香六月 | 99日韩 | 国产日韩欧美一区二区在线观看 | www.操.com| 欧美涩| 日本精品一区二区在线观看 | 国产视频一区二区在线观看 | 亚洲免费av片| 国产精品日韩专区 | 国产精品久久久久久久午夜片 | 精品色 | 日韩在线免费 |