【題目】若采用隨機模擬的方法估計某運動員射擊擊中目標的概率.先由計算器給出0到9之間取整數的隨機數,指定0,1,2,3表示沒有擊中目標,4,5,6,7,8,9表示擊中目標,以4個隨機數為一組,代表射擊4次的結果,經隨機模擬產生了20組如下的隨機數:
7327 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根據以上數據估計該運動員射擊4次至少擊中3次的概率為__________.
科目:高中數學 來源: 題型:
【題目】已知直線的參數方程:
(
為參數),曲線
的參數方程:
(
為參數),且直線交曲線
于
兩點.
(1)將曲線的參數方程化為普通方程,并求
時,
的長度;
(2)巳知點,求當直線傾斜角
變化時,
的范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學習雷鋒精神前半年內某單位餐廳的固定餐椅經常有損壞,學習雷鋒精神時全修好;單位對學習雷鋒精神前后各半年內餐椅的損壞情況作了一個大致統計,具體數據如表:
損壞餐椅數 | 未損壞餐椅數 | 總計 | |
學習雷鋒精神前 | 50 | 150 | 200 |
學習雷鋒精神后 | 30 | 170 | 200 |
總計 | 80 | 320 | 400 |
求:學習雷鋒精神前后餐椅損壞的百分比分別是多少?并初步判斷損毀餐椅數量與學習雷鋒精神是否有關?
請說明是否有
以上的把握認為損毀餐椅數量與學習雷鋒精神
有關?參考公式:
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2﹣4y+1=0,點M(﹣1,﹣1),從圓C外一點P向該圓引一條切線,記切點為T.
(1)若過點M的直線l與圓交于A,B兩點且|AB|=2,求直線l的方程;
(2)若滿足|PT|=|PM|,求使|PT|取得最小值時點P的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2016·貴陽第二次聯考)在△ABC中,角A,B,C的對邊分別為a,b,c,向量m=(a+b,sin A-sin C),向量n=(c,sin A-sin B),且m∥n.
(1)求角B的大小;
(2)設BC的中點為D,且AD=,求a+2c的最大值及此時△ABC的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com