形狀如圖所示的三個游戲盤中(圖(1)是正方形,M、N分別是所在邊中點,圖(2)是半徑分別為2和4的兩個同心圓,O為圓心,圖(3)是正六邊形,點P為其中心)各有一個玻璃小球,依次搖動三個游戲盤后,將它們水平放置,就完成了一局游戲.
(I)一局游戲后,這三個盤中的小球都停在陰影部分的概率是多少?
(II)用隨機變量
表示一局游戲后,小球停在陰影部分的事件數與小球沒有停在陰影部分的事件數之差的絕對值,求隨機變量
的分布列及數學期望.
|
(I)“一局游戲后,這三個盤中的小球都停在陰影部分”分別記為事件A1、A2、A3,由題意知,A1、A2、A3互相獨立,且P(A1),P(A2)
,P(A3)
, …3分
P(A1 A2 A3)= P(A1) P(A2) P(A3)×
×
………………………………6分
(II)一局游戲后,這三個盤中的小球都停在陰影部分的事件數可能是0,1,2,3,相應的小球沒有停在陰影部分的事件數可能取值為3,2,1,0,所以ξ可能的取值為1,3,則
P(ξ=3)=
P(A1 A2 A3)+ P()=P(A1) P(A2)
P(A3)+ P(
)P(
)P(
)
×
×
+
×
×
,
P(ξ=1)=1-=
. …………………………………………………………8分
所以分布列為
ξ |
1 |
|
||
P |
|
|
數學期望Eξ=1×+3×
=
. ………………………………………12分
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源:2011-2012學年湖北省八市高三三月聯考理科數學 題型:解答題
(本題滿分12分)
形狀如圖所示的三個游戲盤中(圖(1)是正方形,M、N分別是所在邊中點,圖(2)是半徑分別為2和4的兩個同心圓,O為圓心,圖(3)是正六邊形,點P為其中心)各有一個玻璃小球,依次搖動三個游戲盤后,將它們水平放置,就完成了一局游戲.
(I)一局游戲后,這三個盤中的小球都停在陰影部分的概率是多少?
(II)用隨機變量表示一局游戲后,小球停在陰影部分的事件數與小球沒有停在陰影部分的事件數之差的絕對值,求隨機變量
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源:2012年遼寧省大連市高考數學壓軸卷 (理科)(解析版) 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com