【題目】在中,三個內(nèi)角的對邊分別為a,b,c,
,
.
求B的值;
設(shè)
,求
的面積S.
【答案】(1);(2)60.
【解析】
試題(1)利用正弦定理變形得:
,即:
,于是可以求出
的值,再求出
的值,由已知條件
可以求出
的值,再求出
的值,然后可以根據(jù)A+C的值求出B的值;(2)根據(jù)已知條件及第(1)問求出的B的值,利用正弦定理
求出
的值,根據(jù)三角形面積公式
就可以求出
的面積。本題重點考查解三角形,利用正弦定理變形,將邊角互相轉(zhuǎn)化,達(dá)到求邊或者求角的目的,另外注意求角的問題轉(zhuǎn)化為求角的三角函數(shù)值,能夠熟練運用三角公式進(jìn)行解題?疾閷W(xué)生對基本公式和基本方法的掌握。
試題解析:(1)
,
.
.
又
是
的內(nèi)角,
.
,
又
是
的內(nèi)角,
,
.
.
(2)
,
.
的面積
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法錯誤的是( )
A.命題“若,則
”的逆否命題為:“若
,則
”
B.“”是“
”的充分而不必要條件
C.若且
為假命題,則
、
均為假命題
D.命題“存在
,使得
”,則非
“任意
,均有
”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
是平行四邊形,
平面
,
,
,
是棱
上的一點.
(1)證明:平面
;
(2)若平面
,求
的值;
(3)在(2)的條件下,三棱錐的體積是18,求
點到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,
,
,
,
平面
.
(1)求證: 平面
;
(2)若為線段
的中點,且過
三點的平面與線段
交于點
,確定點
的位置,說明理由;并求三棱錐
的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),以坐標(biāo)原點為極點,
軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)為
.
(1)求曲線的普通方程和曲線
的直角坐標(biāo)方程;
(2)若曲線和曲線
有三個公共點,求以這三個公共點為頂點的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:=1(a>b>0)的左右焦點分別為F1,F2,焦距為2,一條準(zhǔn)線方程為x=2.P為橢圓C上一點,直線PF1交橢圓C于另一點Q.
(1)求橢圓C的方程;
(2)若點P的坐標(biāo)為(0,b),求過點P,Q,F2三點的圓的方程;
(3)若=
,且λ∈[
],求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】每年六、七月份,我國長江中下游地區(qū)進(jìn)入持續(xù)25天左右的梅雨季節(jié),如圖是江南某地區(qū)年10年間梅雨季節(jié)的降雨量
單位:
的頻率分布直方圖,試用樣本頻率估計總體概率,解答下列問題:
假設(shè)每年的梅雨季節(jié)天氣相互獨立,求該地區(qū)未來三年里至少有兩年梅雨季節(jié)的降雨量超過350mm的概率.
老李在該地區(qū)承包了20畝土地種植楊梅,他過去種植的甲品種楊梅,平均每年的總利潤為28萬元
而乙品種楊梅的畝產(chǎn)量
畝
與降雨量之間的關(guān)系如下面統(tǒng)計表所示,又知乙品種楊梅的單位利潤為
元
,請你幫助老李分析,他來年應(yīng)該種植哪個品種的楊梅可以使總利潤
萬元
的期望更大?并說明理由.
降雨量 | ||||
畝產(chǎn)量 | 500 | 700 | 600 | 400 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com