【題目】如圖,為保護河上古橋OA,規劃建一座新橋BC,同時設立一個圓形保護區.規劃要求:新橋BC與河岸AB垂直;保護區的邊界為圓心M在線段OA上并與BC相切的圓,且古橋兩端O和A到該圓上任意一點的距離均不少于80 m.經測量,點A位于點O正北方向60 m處,點C位于點O正東方向170 m處(OC為河岸),tan∠BCO=.
(1)求新橋BC的長;
(2)當OM多長時,圓形保護區的面積最大?
【答案】(1) 150 m (2) |OM|=10 m
【解析】試題分析:本題是應用題,我們可用解析法來解決,為此以為原點,以向東,向北為坐標軸建立直角坐標系.(1)
點坐標炎
,
,因此要求
的長,就要求得
點坐標,已知
說明直線
斜率為
,這樣直線
方程可立即寫出,又
,故
斜率也能得出,這樣
方程已知,兩條直線的交點
的坐標隨之而得;(2)實質就是圓半徑最大,即線段
上哪個點到直線
的距離最大,為此設
,由
,圓半徑
是圓心
到直線
的距離,而求它的最大值,要考慮條件古橋兩端
和
到該圓上任一點的距離均不少于80
,列出不等式組,可求得
的范圍,進而求得最大值.當然本題如果用解三角形的知識也可以解決.
試題解析:
(1)如圖,以為
軸建立直角坐標系,則
,
,由題意
,直線
方程為
.又
,故直線
方程為
,由
,解得
,即
,所以
;
(2)設,即
,由(1)直線
的一般方程為
,圓
的半徑為
,由題意要求
,由于
,因此
,∴
∴
,所以當
時,
取得最大值
,此時圓面積最大.
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(Ⅰ)求曲線在點
處的切線的斜率;
(Ⅱ)判斷方程(
為
的導數)在區間
內的根的個數,說明理由;
(Ⅲ)若函數在區間
內有且只有一個極值點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知兩個正方形ABCD和DCEF不在同一平面內,M,N分別為AB,DF的中點.
(1)若平面ABCD⊥平面DCEF,求直線MN與平面DCEF所成角的正弦值;
(2)用反證法證明:直線ME與BN是兩條異面直線.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的導函數f′(x),且對任意x>0,都有f′(x)>.
(1)判斷函數F(x)=在(0,+∞)上的單調性;
(2)設x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1+x2);
(3)請將(2)中結論推廣到一般形式,并證明你所推廣的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E: 的焦點在x軸上,A是E的左頂點,斜率為k(k>0)的直線交E于A,M兩點,點N在E上,MA⊥NA.
(1)當t=4,|AM|=|AN|時,求△AMN的面積;
(2)當2|AM|=|AN|時,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2017·泰安模擬)如圖,在正四棱柱ABCDA1B1C1D1中,E為AD的中點,F為B1C1的中點.
(1)求證:A1F∥平面ECC1;
(2)在CD上是否存在一點G,使BG⊥平面ECC1?若存在,請確定點G的位置,并證明你的結論,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知曲線
,以平面直角坐標系
的原點
為極點,
軸的正半軸為極軸,取相同的單位長度建立極坐標系,已知直線
.
(1)將曲線上的所有點的橫坐標、縱坐標分別伸長為原來的
倍、2倍后得到曲線
.試寫出直線
的直角坐標方程和曲線
的參數方程;
(2)在曲線上求一點
,使點
到直線
的距離最大,并求出此最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com