【題目】已知函數f(x)=(x﹣ )ex , g(x)=4x2﹣4x+mln(2x)(m∈R),g(x)存在兩個極值點x1 , x2(x1<x2).
(1)求f(x1﹣x2)的最小值;
(2)若不等式g(x1)≥ax2恒成立,求實數a的取值范圍.
【答案】
(1)解: ,
令g'(x)=0得8x2﹣4x+m=0①,
因為g(x)存在兩個極值點x1,x2(x1<x2),
所以方程①在(0,+∞)上有兩個不等實根x1,x2,
所以 解得
,
且 ,
所以
,
當 時,f'(x)<0,當
時,f'(x)>0,
所以f(x1﹣x2)的最小值為
(2)解:)由(Ⅰ)可知, ,
由g(x1)≥ax2得 ,
所以
=
=
=
=
令(x)= (
),
則'(x)=
因為 ,
所以 ,φ'(x)<0,即φ(x)在
遞減,
綜上,實數a的取值范圍為(﹣∞,﹣3﹣2ln2]
【解析】(1)求出函數的導數,求出極值點,g(x)存在兩個極值點x1 , x2(x1<x2),推出 ,求出m的范圍,化簡x1﹣x2 , 通過
時,f'(x)<0,當
時,f'(x)>0,求解f(x1﹣x2)的最小值.(2)通過g(x1)≥ax2得
,化簡
=
,構造(x)=
(
),求出導函數,利用函數的單調性求解最值即可.
【考點精析】本題主要考查了函數的極值與導數的相關知識點,需要掌握求函數的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】某闖關游戲規則是:先后擲兩枚骰子,將此試驗重復n輪,第n輪的點數分別記為xn , yn , 如果點數滿足xn< ,則認為第n輪闖關成功,否則進行下一輪投擲,直到闖關成功,游戲結束.
(I)求第一輪闖關成功的概率;
(Ⅱ)如果第i輪闖關成功所獲的獎金數f(i)=10000× (單位:元),求某人闖關獲得獎金不超過1250元的概率;
(Ⅲ)如果游戲只進行到第四輪,第四輪后不論游戲成功與否,都終止游戲,記進行的輪數為隨機變量X,求x的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過雙曲線 (a>0,b>0)的右焦點F2(c,0)作圓x2+y2=a2的切線,切點為M,延長F2M交拋物線y2=﹣4cx于點P,其中O為坐標原點,若
,則雙曲線的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正三棱柱ABC﹣A1B1C1中,AB=2,AA1=3,點D為BC的中點;
(Ⅰ)求證:A1B∥平面AC1D;
(Ⅱ)若點E為A1C上的點,且滿足 =m
(m∈R),若二面角E﹣AD﹣C的余弦值為
,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=(x﹣1)ex+ax2有兩個零點 (Ⅰ)當a=1時,求f(x)的最小值;
(Ⅱ)求a的取值范圍;
(Ⅲ)設x1 , x2是f(x)的兩個零點,證明:x1+x2<0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正項數列{an}的前n項和為Sn , 且 是1與an的等差中項.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設Tn為數列{ }的前n項和,證明:
<Tn<1(n∈N*)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一般情況下,城市主干道上的車流速度 (單位:千米/小時)是車流密度
(單位:輛/千米)的函數。當主干道上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0千米/小時;當車流密度不超過20輛/千米時,車流速度為60千米/小時。研究表明:當
時,車流速度
是車流密度
的一次函數。
(1)當 時,求函數
的表達式;
(2)當車流密度為多大時,車流量(單位時間內通過主干道上某觀測點的車輛數,單位:輛/小時) 可以達到最大?并求出最大值。(精確到1輛/小時)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com