日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知常數(shù)p>0且p≠1,數(shù)列{an}前n項和Sn=
p1-p
(1-an)
數(shù)列{bn}滿足bn+1-bn=logpa2n-1且b1=1,
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若對于區(qū)間[0,1]上的任意實數(shù)λ,總存在不小于2的自然數(shù)k,當(dāng)n≥k時,bn≥(1-λ)(3n-2)恒成立,求k的最小值.
分析:(1)當(dāng)n≥2時,an=Sn-Sn-1=
p
1-p
(1-an)-
p
1-p
(1-an-1)
,整理得an=pan-1,由an>0,知
an
an-1
=p
,故數(shù)列{an}等比數(shù)列.
(2)由an=pnbn+1-bn=logpa2n-1=2n-1,知bn=(bn-bn-1)+(bn-1-bn-2)+…+(b2-b1)+b1=n2-2n+2,故(n2-2n+2)≥(1-λ)(3n-2),變形為(3n-2)λ+n2-5n+4≥0在λ∈[0,1]時恒成立.由此能求出k的最小值.
解答:解:(1)當(dāng)n≥2時,an=Sn-Sn-1=
p
1-p
(1-an)-
p
1-p
(1-an-1)
整理得an=pan-1a1=S1=
p
1-p
(1-a1)?a1=p>0

恒有an>0從而
an
an-1
=p
數(shù)列an等比數(shù)列
(2)由(1)知an=pnbn+1-bn=logpa2n-1=2n-1∴bn=(bn-bn-1)+(bn-1-bn-2)++(b2-b1)+b1=n2-2n+2
∴(n2-2n+2)≥(1-λ)(3n-2)變形為(3n-2)λ+n2-5n+4≥0在λ∈[0,1]時恒成立
記f(λ)=(3n-2)λ+n2-5n+4則有:
f(0)≥0
f(1)≥0
?n≥4
或n≤1但由于n≥2∴n≥4
綜上知:k的最小值為4
點評:本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,注意等比數(shù)列的證明.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面中兩條直線l1和l2相交于點O,對于平面上任意一點M,若p,q分別是M到直線l1和l2的距離,則稱有序非負(fù)實數(shù)對(p,q)是點M的“距離坐標(biāo)”,已知常數(shù)p≥0,q≥0,給出下列三個命題:

①若p=q=0,則“距離坐標(biāo)”為(0,0)的點有且僅有1個.

②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點有且僅有2個.

③若pq≠0,則“距離坐標(biāo)”為(p,q)的點有且僅有4個.

上述命題中,正確命題的個數(shù)是(    )

A.0                    B.1                   C.2                  D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面中兩條直線l1和l2相交于點O,對于平面上任意一點M,若p,q分別是M到直線l1和l2的距離,則稱有序非負(fù)實數(shù)對(p,q)是點M的“距離坐標(biāo)”,已知常數(shù)p≥0,q≥0,給出下列三個命題:

①若p=q=0,則“距離坐標(biāo)”為(0,0)的點有且僅有1個.

②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點有且僅有2個.

③若pq≠0,則“距離坐標(biāo)”為(p,q)的點有且僅有4個.

上述命題中,正確命題的個數(shù)是(    )

A.0                    B.1                   C.2                  D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面中兩條直線l1和l2相交于點O,對于平面上任意一點M,若p,q分別是M到直線l1和l2的距離,則稱有序非負(fù)實數(shù)對(p,q)是點M的“距離坐標(biāo)”,已知常數(shù)p≥0,q≥0,給出下列三個命題:

①若p=q=0,則“距離坐標(biāo)”為(0,0)的點有且僅有1個.

②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點有且僅有2個.

③若pq≠0,則“距離坐標(biāo)”為(p,q)的點有且僅有4個.

上述命題中,正確命題的個數(shù)是(    )

A.0                    B.1                   C.2                  D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知常數(shù)p>0且p≠1,數(shù)列{an}前n項和數(shù)學(xué)公式數(shù)列{bn}滿足bn+1-bn=logpa2n-1且b1=1,
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若對于區(qū)間[0,1]上的任意實數(shù)λ,總存在不小于2的自然數(shù)k,當(dāng)n≥k時,bn≥(1-λ)(3n-2)恒成立,求k的最小值.

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 精品一区二区三区久久久 | 越南一级毛片免费 | 日韩在线视频精品 | 亚洲精品视频在线 | 亚洲精品美女视频 | 中文字幕国产高清 | 国产福利免费视频 | 久久久久久亚洲 | 狠狠综合久久av一区二区老牛 | av一级在线观看 | 久久精品中文字幕 | 日韩av一区二区在线观看 | 成人精品一区二区三区 | 久久久久国 | 91亚洲国产成人精品性色 | 美国黄色毛片 | 黄www| 国产精品久久久久久福利 | 成人精品二区 | 国产欧美在线观看不卡 | 91在线免费看 | 日本不卡在线播放 | 亚洲欧美久久 | 日批视频在线播放 | www.久久| 91精品视频一区 | 精品国产一区二区三区久久影院 | 国产高清一区 | 日本不卡一二三区 | 亚洲精品国产setv | 国产77777 | 在线成人亚洲 | 中文字幕一区二区三区四区不卡 | 欧美一级二级视频 | 亚洲视频区| 久久国产精品无码网站 | 精品91久久久 | aaaaaa毛片 | a毛片| 亚洲视频在线观看免费 | 国产成人99久久亚洲综合精品 |