【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:萬元)對年銷售量
(單位:噸)和年利潤
(單位:萬元)的影響.對近六年的年宣傳費
和年銷售量
的數據作了初步統計,得到如下數據:
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年宣傳費 | 38 | 48 | 58 | 68 | 78 | 88 |
年銷售量 | 16.8 | 18.8 | 20.7 | 22.4 | 24.0 | 25.5 |
經電腦模擬,發現年宣傳費(萬元)與年銷售量
(噸)之間近似滿足關系式
,即
.對上述數據作了初步處理,得到相關的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(1)根據所給數據,求關于
的回歸方程;
(2)規定當產品的年銷售量(噸)與年宣傳費
(萬元)的比值在區間
內時認為該年效益良好.該公司某
年投入的宣傳費用(單位:萬元)分別為:
、
、
、
、
、
,試根據回歸方程估計年銷售量,從這
年中任選
年,記其中選到效益良好年的數量為
,試求隨機變量
的分布列和期望.(其中
為自然對數的底數,
)
附:對于一組數據,
,…,
,其回歸直線
中的斜率和截距的最小二乘估計分別為
,
.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=cosx(sinx+cosx)﹣ .
(1)若0<α< , 且sinα=
, 求f(α)的值;
(2)求函數f(x)的最小正周期及單調遞增區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ax2+lnx.
(Ⅰ)當a=﹣1時,求函數y=f(x)的圖象在點(1,f(1))處的切線方程;
(Ⅱ)已知a<0,若函數y=f(x)的圖象總在直線y=-的下方,求a的取值范圍;
(Ⅲ)記f′(x)為函數f(x)的導函數.若a=1,試問:在區間[1,10]上是否存在k(k<100)個正數x1 , x2 , x3…xk , 使得f′(x1)+f′(x2)+f′(x3)+…+f′(xk)≥2012成立?請證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C所對應的邊分別為a,b,c.
(1)若a,b,c成等差數列,證明:sinA+sinC=2sin(A+C);
(2)若a,b,c成等比數列,求cosB的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,曲線C由上半橢圓C1: =1(a>b>0,y≥0)和部分拋物線C2:y=﹣x2+1(y≤0)連接而成,C1與C2的公共點為A,B,其中C1的離心率為
.
(1)求a,b的值;
(2)過點B的直線l與C1 , C2分別交于點P,Q(均異于點A,B),若AP⊥AQ,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,
,且f(x)=
.
(1)求函數f(x)的解析式;最小正周期及單調遞增區間.
(2)當時,f(x)的最小值是-4,求此時函數f(x)的最大值,并求出相應的x的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有甲、乙兩個項目,對甲項目每投資10萬元,一年后利潤是1.2萬元、1.18萬元、1.17萬元的概率分別為;已知乙項目的利潤與產品價格的調整有關,在每次調整中,價格下降的概率都是p(0<p<1),設乙項目產品價格在一年內進行兩次獨立的調整.記乙項目產品價格在一年內的下降次數為X,對乙項目每投資10萬元,X取0、1、2時,一年后相應利潤是1.3萬元、1.25萬元、0.2萬元.隨機變量X1、X2分別表示對甲、乙兩項目各投資10萬元一年后的利潤.
(1)求X1,X2的概率分布和均值E(X1),E(X2);
(2)當E(X1)<E(X2)時,求p的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形是一個歷史文物展覽廳的俯視圖,點
在
上,在梯形
區域內部展示文物,
是玻璃幕墻,游客只能在
區域內參觀.在
上點
處安裝一可旋轉的監控攝像頭.
為監控角,其中
、
在線段
(含端點)上,且點
在點
的右下方.經測量得知:
米,
米,
米,
.記
(弧度),監控攝像頭的可視區域
的面積為
平方米.
(1)求關于
的函數關系式,并寫出
的取值范圍;(參考數據:
)
(2)求的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com