【題目】已知數列{an}滿足a1=2,前n項和為Sn , 若Sn=2(an﹣1),(n∈N+).
(1)求數列{an}的通項公式;
(2)設bn=(log2an+1)2﹣(log2an)2 , 若cn=anbn , 求{cn}的前n項和Tn .
【答案】
(1)解:∵Sn=2(an﹣1),
∴當n≥2時,an=Sn﹣Sn﹣1=2(an﹣1)﹣2(an﹣1﹣1)
=2(an﹣an﹣1),則an=2an﹣1,
又a1=2,則數列{an}是以2為首項、公比的等比數列,
∴ =2n
(2)解:由(1)得,bn=(log2an+1)2﹣(log2an)2
=(n+1)2﹣n2=2n+1,
∴cn=anbn=(2n+1)2n,
∴Tn=3×2+5×22+…+(2n+1)×2n,①
則2Tn=3×22+5×23+…+(2n+1)×2n+1,②
①﹣②得:﹣Tn=6+2(22+23+…+2n)﹣(2n+1)2n+1
=6+2× ﹣(2n+1)2n+1=(﹣2n+1)2n+1﹣2,
∴Tn=(2n﹣1)2n+1+2
【解析】(1)由題意和當n≥2時an=Sn﹣Sn﹣1進行化簡,得到數列的遞推公式,由等比數列的定義判斷出數列{an}是等比數列,由等比數列的通項公式求出{an}的通項公式;(2)由(1)和對數的運算化簡bn=(log2an+1)2﹣(log2an)2 , 代入cn=anbn化簡后,利用錯位相減法和等比數列的前n項和公式求Tn .
【考點精析】關于本題考查的數列的前n項和和數列的通項公式,需要了解數列{an}的前n項和sn與通項an的關系;如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】定義在(﹣∞,0)∪(0,+∞)上的函數f(x),總有f(mn)=f(m)f(n),且f(x)>0,當x>1時,f(x)>1.
(1)求f(1),f(﹣1)的值;
(2)判斷函數的奇偶性,并證明;
(3)判斷函數在(0,+∞)上的單調性,并證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在幾何體中,四邊形為菱形,對角線
與
的交點為
,四邊形
為梯形,
.
(Ⅰ)若,求證:
平面
;
(Ⅱ)求證:平面平面
;
(Ⅲ)若,
,
,求
與平面
所成角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且滿足2acosC﹣(2b﹣c)=0.
(1)求角A;
(2)若sinC=2sinB,且a= ,求邊b,c.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=asin 2x+bcos 2x,其中a,b∈R,ab≠0.若f(x)≤|f( )|對一切x∈R恒成立,則以下結論正確的是(寫出所有正確結論的編號). ①
;②
≥
;
③f(x)的單調遞增區間是(kπ+ ,kπ+
)(k∈Z);
④f(x)既不是奇函數也不是偶函數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨機抽取某中學高三年級甲乙兩班各10名同學,測量出他們的身高(單位:cm),獲得身高數據的莖葉圖如圖.其中甲班有一個數據被污損.
(Ⅰ)若已知甲班同學身高平均數為170cm,求污損處的數據;
(Ⅱ)現從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2x2﹣3x+1, ,(A≠0)
(1)當0≤x≤ 時,求y=f(sinx)的最大值;
(2)若對任意的x1∈[0,3],總存在x2∈[0,3],使f(x1)=g(x2)成立,求實數A的取值范圍;
(3)問a取何值時,方程f(sinx)=a﹣sinx在[0,2π)上有兩解?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com