【題目】正數(shù)數(shù)列、
滿足:
≥
,且對一切k≥2,k
,
是
與
的等差中項(xiàng),
是
與
的等比中項(xiàng).
(1)若,
,求
,
的值;
(2)求證:是等差數(shù)列的充要條件是
為常數(shù)數(shù)列;
(3)記,當(dāng)n≥2(n
)時(shí),指出
與
的大小關(guān)系并說明理由.
【答案】(1),
.(2)見解析(3)
【解析】
(1)由題意得,解方程組可得所求.(2)證明結(jié)論“當(dāng)
為常數(shù)數(shù)列時(shí),
是公差為零的等差數(shù)列”和“
是等差數(shù)列時(shí)
為常數(shù)數(shù)列”同時(shí)成立即可.(3)由題意證得
,進(jìn)而得到
,故得
,然后通過數(shù)列求和可得結(jié)論成立.
(1)由條件得,即
,
解得或
,
又≥
,
所以.
(2)(充分性):當(dāng)為常數(shù)數(shù)列時(shí),
是公差為零的等差數(shù)列,即充分性成立.
(必要性):因?yàn)?/span>
,
又當(dāng)為等差數(shù)列時(shí),
對任意
恒成立.
所以 ,
因?yàn)?/span>,
所以,即
,
從而對
恒成立,
所以為常數(shù)列.
綜上可得是等差數(shù)列的充要條件是
為常數(shù)數(shù)列.
(3)因?yàn)槿我?/span>,
,
又,
所以.
從而
,
即,
則,
所以
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知斜三棱柱ABC﹣A1B1C1的底面是正三角形,點(diǎn)M、N分別是B1C1和A1B1的中點(diǎn),AA1=AB=BM=2,∠A1AB=60°.
(1)求證:BN⊥平面A1B1C1;
(2)求二面角A1﹣AB﹣M的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列的前
項(xiàng)和為
,
,
.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列滿足:
對于任意,都有
成立.
①求數(shù)列的通項(xiàng)公式;
②設(shè)數(shù)列,問:數(shù)列
中是否存在三項(xiàng),使得它們構(gòu)成等差數(shù)列?若存在,求出這三項(xiàng);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在邊長為8的正方形ABCD中,M是BC的中點(diǎn),N是AD邊上的一點(diǎn),且DN=3NA,若對于常數(shù)m,在正方形ABCD的邊上恰有6個(gè)不同的點(diǎn)P,使,則實(shí)數(shù)m的取值范圍是_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過橢圓W:的左焦點(diǎn)F1作直線l1交橢圓于A,B兩點(diǎn),其中A(0,1),另一條過F1的直線l2交橢圓于C,D兩點(diǎn)(不與A,B重合),且D點(diǎn)不與點(diǎn)0,﹣1重合.過F1作x軸的垂線分別交直線AD,BC于E,G.
(1)求B點(diǎn)坐標(biāo)和直線l1的方程;
(2)比較線段EF1和線段GF1的長度關(guān)系并給出證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線的方程為
,集合
,若對于任意的
,都存在
,使得
成立,則稱曲線
為
曲線.下列方程所表示的曲線中,是
曲線的有__________(寫出所有
曲線的序號(hào))
①;②
;③
;④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體中,點(diǎn)P為AD的中點(diǎn),點(diǎn)Q為
上的動(dòng)點(diǎn),給出下列說法:
可能與平面
平行;
與BC所成的最大角為
;
與PQ一定垂直;
與
所成的最大角的正切值為
;
.
其中正確的有______寫出所有正確命題的序號(hào)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若函數(shù)
在
上有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)
的取值范圍是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,
,
,
為
的中點(diǎn).
(I)若為
上的一點(diǎn),且
與直線
垂直,求
的值;
(Ⅱ)在(I)的條件下,設(shè)異面直線與
所成的角為45°,求直線
與平面
成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com