對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù)
,滿足
,則稱
為“局部奇函數(shù)”.
(Ⅰ)已知二次函數(shù),試判斷
是否為“局部奇函數(shù)”?并說(shuō)明理由;
(Ⅱ)若是定義在區(qū)間
上的“局部奇函數(shù)”,求實(shí)數(shù)
的取值范圍;
(Ⅲ)若為定義域
上的“局部奇函數(shù)”,求實(shí)數(shù)
的取值范圍.
(Ⅰ)是,理由詳見(jiàn)解析;(Ⅱ);(Ⅲ)
.
解析試題分析:(Ⅰ)判斷方程是否有解;(Ⅱ)在方程
有解時(shí),通過(guò)分離參數(shù)求取值范圍;(Ⅲ)在不便于分離參數(shù)時(shí),通二次函數(shù)的圖象判斷一元二次方程根的分布.
試題解析:為“局部奇函數(shù)”等價(jià)于關(guān)于
的方程
有解.
(Ⅰ)當(dāng)時(shí),
方程即
有解
,
所以為“局部奇函數(shù)”. 3分
(Ⅱ)當(dāng)時(shí),
可化為
,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/4/onsew.png" style="vertical-align:middle;" />的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/55/4/2a0yl.png" style="vertical-align:middle;" />,所以方程在
上有解. 5分
令,則
.
設(shè),則
,
當(dāng)時(shí),
,故
在
上為減函數(shù),
當(dāng)時(shí),
,故
在
上為增函數(shù),. 7分
所以時(shí),
.
所以,即
. 9分
(Ⅲ)當(dāng)時(shí),
可化為
.
設(shè),則
,
從而在
有解即可保證
為“局部奇函數(shù)”. 11分
令,
1° 當(dāng),
在
有解,
由,即
,解得
; 13分
2° 當(dāng)時(shí),
在
有解等價(jià)于
解得
. 15分
(說(shuō)明:也可轉(zhuǎn)化為大根大于等于2求解)
綜上,所求實(shí)數(shù)m的取值范圍為. 16分
考點(diǎn):函數(shù)的值域、方程解的存在性的判定.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1)當(dāng)時(shí),證明:函數(shù)
不是奇函數(shù);
(2)設(shè)函數(shù)是奇函數(shù),求
與
的值;
(3)在(2)條件下,判斷并證明函數(shù)的單調(diào)性,并求不等式
的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/05/9/xmvoe3.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù).
(1)求的值;
(2)判斷函數(shù)的單調(diào)性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知冪函數(shù)的圖象與x軸,y軸無(wú)交點(diǎn)且關(guān)于原點(diǎn)對(duì)稱,又有函數(shù)f(x)=x2-alnx+m-2在(1,2]上是增函數(shù),g(x)=x-
在(0,1)上為減函數(shù).
①求a的值;
②若,數(shù)列{an}滿足a1=1,an+1=p(an),(n∈N+),數(shù)列{bn},滿足
,
,求數(shù)列{an}的通項(xiàng)公式an和sn.
③設(shè),試比較[h(x)]n+2與h(xn)+2n的大小(n∈N+),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),函數(shù)
.
(1)判斷函數(shù)的奇偶性;
(2)若當(dāng)時(shí),
恒成立,求實(shí)數(shù)
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(I)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,對(duì)
都有
成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)證明:(
且
).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)若函數(shù)
在
和
上是增函數(shù),在
是減函數(shù),求
的值;
討論函數(shù)
的單調(diào)遞減區(qū)間;
如果存在
,使函數(shù)
,
,在
處取得最小值,試求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)滿足:
(
),
(1)用反證法證明:不可能為正比例函數(shù);
(2)若,求
的值,并用數(shù)學(xué)歸納法證明:對(duì)任意的
,均有:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù),其中
為常數(shù).
(Ⅰ)當(dāng)時(shí),判斷函數(shù)
在定義域上的單調(diào)性;
(Ⅱ)當(dāng)時(shí),求
的極值點(diǎn)并判斷是極大值還是極小值;
(Ⅲ)求證對(duì)任意不小于3的正整數(shù),不等式
都成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com