【題目】已知函數f(x)=sin2ωx+2 sinωxcosωx﹣cos2ωx(ω>0),f(x)的圖象相鄰兩條對稱軸的距離為
.
(1)求f( )的值;
(2)將f(x)的圖象上所有點向左平移m(m>0)個長度單位,得到y=g(x)的圖象,若y=g(x)圖象的一個對稱中心為( ,0),當m取得最小值時,求g(x)的單調遞增區間.
【答案】
(1)解:由題意可得:f(x)=sin2ωx+2 sinωxcosωx﹣cos2ωx
=﹣(cos2ωx﹣sin2ωx)+ sin2ωx
= sin2ωx﹣cos2ωx
=2sin(2ωx﹣ )
∵f(x)的圖象相鄰兩條對稱軸的距離為 .
∴周期T= ,由
=
,可得ω=2.
∴f(x)=2sin(4x﹣ ),
∴f( )=2sin(4×
﹣
)=2sin
=1
(2)解:由(1)可知f(x)=2sin(4x﹣ ),則g(x)=2sin(4x+4m﹣
),
∵( ,0)為y=g(x)圖象的一個對稱中心,
∴2sin(4× +4m﹣
)=0,解得:4×
+4m﹣
=kπ(k∈Z),可得:m=
﹣
,
當k=1時,m取得最小值
此時g(x)=2sin(4x+ ),
由2k ≤4x+
≤2k
,k∈Z,解得g(x)的單調遞增區間為:[
﹣
,
+
],k∈Z
【解析】(1)由三角函數恒等變換的應用可求函數解析式f(x)=2sin(2ωx﹣ ),由題意可求周期T=
,由周期公式可求ω,從而可得函數解析式,進而得解.(2)由(1)可求g(x)=2sin(4x+4m﹣
),由題意可得4×
+4m﹣
=kπ(k∈Z),可得:m=
﹣
,可求m的最小值,由2k
≤4x+
≤2k
,k∈Z,解得g(x)的單調遞增區間.
【考點精析】本題主要考查了函數y=Asin(ωx+φ)的圖象變換的相關知識點,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數
的圖象;再將函數
的圖象上所有點的橫坐標伸長(縮短)到原來的
倍(縱坐標不變),得到函數
的圖象;再將函數
的圖象上所有點的縱坐標伸長(縮短)到原來的
倍(橫坐標不變),得到函數
的圖象才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知集合M={ ( x ,y ) | y=f(x) },若對于任意( x1 ,y1 )∈M,都存在( x2 ,y2 )∈M,使得x1 x2 +y1 y2 =0成立,則稱集合M是“理想集合”,則下列集合是理想集合的是( )
A. M={ ( x ,y ) | y= } B. M={ ( x ,y ) | y=log2 (x-1) }
C. M={ ( x ,y ) | y=x2-2x+2 } D. M={ ( x ,y ) | y=cosx }
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義域為R的奇函數,當x<0時,.
(1)求f(2)的值;
(2)用定義法判斷y=f(x)在區間(-∞,0)上的單調性.
(3)求的解析式
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數定義域為
,若對于任意的
,都有
,且
時,有
.
(1)判斷并證明函數的奇偶性;
(2)判斷并證明函數的單調性;
(3)設,若
,對所有
,
恒成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= ,函數g(x)=b﹣f(2﹣x),其中b∈R,若函數y=f(x)﹣g(x)恰有4個零點,則b的取值范圍是( )
A.( ,+∞)
B.(﹣∞, )
C.(0, )
D.( ,2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知
.
(1)請寫出fn(x)的表達式(不需證明);
(2)設fn(x)的極小值點為Pn(xn , yn),求yn;
(3)設 ,gn(x)的最大值為a,fn(x)的最小值為b,求b﹣a的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com