【題目】已知△ABC的內角A,B,C的對邊分別為a,b,c.
(1)若的面積
,求a+c值;
(2)若2cosC(+
)=c2,求角C.
【答案】(1)5(2)
【解析】
(1)由已知利用三角形面積公式可求ac=6,結合余弦定理可求a+c的值.
(2)利用平面向量數量積的運算,正弦定理,三角函數恒等變換的應用化簡已知等式可求cosC=,結合范圍C∈(0,π),可求C的值.
解:(1)∵的面積
,
∴=
acsinB=
ac,可得:ac=6,
∵由余弦定理b2=a2+c2-2accosB,可得:7=a2+c2-ac=(a+c)2-3ac=(a+c)2-18,
解得:a+c=5.
(2)∵2cosC(+
)=c2,
∴2cosC(accosB+bccosA)=c2,可得:2cosC(acosB+bcosA)=c,
∴由正弦定理可得:2cosC(sinAcosB+sinBcosA)=sinC,即2cosCsinC=sinC,
∵sinC≠0,
∴cosC=,
∵C∈(0,π),
∴C=.
科目:高中數學 來源: 題型:
【題目】已知函數,則下列命題中正確命題的個數是( )
①函數在
上為周期函數
②函數在區間
,
上單調遞增
③函數在
(
)取到最大值
,且無最小值
④若方程(
)有且僅有兩個不同的實根,則
A.個B.
個C.
個D.
個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知正三棱錐P-ABC的側面是直角三角形,PA=6,頂點P在平面ABC內的正投影為點D,D在平面PAB內的正投影為點E,連結PE并延長交AB于點G.
(Ⅰ)證明:G是AB的中點;
(Ⅱ)在圖中作出點E在平面PAC內的正投影F(說明作法及理由),并求四面體PDEF的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是某學校研究性課題《什么樣的活動最能促進同學們進行垃圾分類》向題的統計圖(每個受訪者都只能在問卷的5個活動中選擇一個),以下結論錯誤的是( )
A. 回答該問卷的總人數不可能是100個
B. 回答該問卷的受訪者中,選擇“設置分類明確的垃圾桶”的人數最多
C. 回答該問卷的受訪者中,選擇“學校團委會宣傳”的人數最少
D. 回答該問卷的受訪者中,選擇“公益廣告”的人數比選擇“學校要求”的少8個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點在橢圓
上,
為坐標原點,直線
的斜率與直線
的斜率乘積為
.
(1)求橢圓的方程;
(2)不經過點的直線
(
且
)與橢圓
交于
,
兩點,
關于原點的對稱點為
(與點
不重合),直線
,
與
軸分別交于兩點
,
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公園為了美化環境和方便顧客,計劃建造一座圓弧形拱橋,已知該橋的剖面如圖所示,共包括圓弧形橋面和兩條長度相等的直線型路面
、
,橋面跨度
的長不超過
米,拱橋
所在圓的半徑為
米,圓心
在水面
上,且
和
所在直線與圓
分別在連結點
和
處相切.設
,已知直線型橋面每米修建費用是
元,弧形橋面每米修建費用是
元.
(1)若橋面(線段、
和弧
)的修建總費用為
元,求
關于
的函數關系式;
(2)當為何值時,橋面修建總費用
最低?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種產品的質量以其質量指標值衡量,并依據質量指標值劃分等級如下表:
從某企業生產的這種產品中抽取200件,檢測后得到如下的頻率分布直方圖:
(1)根據以上抽樣調查數據,能否認為該企業生產的這種產品符合“一、二等品至少要占全部產品”的規定?
(2)在樣本中,按產品等級用分層抽樣的方法抽取8件,再從這8件產品中隨機抽取4件,求抽取的4件產品中,一、二、三等品都有的概率;
(3)該企業為提高產品質量,開展了“質量提升月”活動,活動后再抽樣檢測,產品質量指標值近似滿足
,則“質量提升月”活動后的質量指標值的均值比活動前大約提升了多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com