(本小題滿分14分)
設橢圓方程為
拋物線方程為
如圖4所示,過點
作
軸的平行線,與拋物線在第一象限的交點為G.已知拋物線在點G的切線經過橢圓的右焦點
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設A,B分別是橢圓長軸的左、右端點,試探究在拋物線上是否存在點P,使得為直角三角形?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標) 。
(1)橢圓和拋物線的方程分別為和
;
(2)存在,有4個點,理由見解析。
【解析】 對于(1)重點要抓住拋物線在點G的切線經過橢圓的右焦點F1,故先要設法求出點G及拋物線在點G的切線,再求F1,利用同一個F1求出b即可;對于(2)首先要注意直角三個角均有可能為直角,不要遺漏,對于
為直角的情況可利用向量或斜率求解;
(1)由得
,
當得
,
G點的坐標為
,
,
,
過點G的切線方程為即
,
令得
,
點的坐標為
,由橢圓方程得
點的坐標為
,
即
,
即橢圓和拋物線的方程分別為和
;
(2)過
作
軸的垂線與拋物線只有一個交點
,
以
為直角的
只有一個,同理
以
為直角的
只有一個。
若以為直角,設
點坐標為
,
、
兩點的坐標分別為
和
,
。
關于的二次方程有一解,
有兩解,即以
為直角的
有兩個,因此拋物線上存在四個點使得
為直角三角形。
科目:高中數學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數學 來源:2011年江西省撫州市教研室高二上學期期末數學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(
)在函數
的圖像上,其中
=
.
(1)證明:數列}是等比數列;
(2)設,求
及數列{
}的通項公式;
(3)記,求數列{
}的前n項和
,并證明
.
查看答案和解析>>
科目:高中數學 來源:2015屆山東省威海市高一上學期期末考試數學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監測統計發現,第天(
)的銷售價格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第
天的函數關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年廣東省高三下學期第一次月考文科數學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點
處的切線與直線
平行.
⑴ 求,
滿足的關系式;
⑵ 若上恒成立,求
的取值范圍;
⑶ 證明:(
)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com