【題目】函數(shù) 的部分圖像如圖所示,將
的圖象向右平移
個單位長度后得到函數(shù)
的圖象.
(1)求函數(shù) 的解折式;
(2)在 中,角
滿足
,且其外接圓的半徑
,求
的面積的最大值.
【答案】
(1)解:由圖知 ,解得
∵
∴ ,即
由于 ,因此
∴
∴
即函數(shù) 的解析式為
(2)解:∵
∴
∵ ,
∴ ,即
,
∴ 或1(舍),
由正弦定理得 ,解得
由余弦定理得
∴ ,
(當(dāng)且僅當(dāng)
等號成立)
∴
∴ 的面積最大值為
【解析】(1)根據(jù)圖象知周期T,由周期公式求出ω = 2,由,結(jié)合φ范圍,得出φ的值,進(jìn)而利用三角函數(shù)圖象的變換規(guī)律即可得解,(2)利用三角函數(shù)恒等變換的應(yīng)用及三角形內(nèi)角和定理化簡可得cosC的值,進(jìn)而得到C的角度,由正弦定理解得c,由余弦定理,基本不等式可求ab≤4,利用面積公式可得面積的最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形 所在平面與等腰直角三角形
所在平面互相垂直,
,
,
為線段
的中點.
(Ⅰ)證明: ;
(Ⅱ)求 與平面
所成的角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)國家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū) 的年平均濃度不得超過3S微克/立方米,
的24小時平均濃度不得超過75微克/立方米.某市環(huán)保局隨機(jī)抽取了一居民區(qū)2016年20天
的24小時平均濃度(單位:微克/立方米)的監(jiān)測數(shù)據(jù),數(shù)據(jù)統(tǒng)計如圖表:
組別 |
| 頻數(shù)(天) | 頻率 |
第一組 | 3 | 0.15 | |
第二組 | 12 | 0.6 | |
第三組 | 3 | 0.15 | |
第四組 | 2 | 0.1 |
(Ⅰ)將這20天的測量結(jié)果按表中分組方法繪制成的樣本頻率分布直方圖如圖.
(ⅰ)求圖中 的值;
(ⅱ)在頻率分布直方圖中估算樣本平均數(shù),并根據(jù)樣本估計總體的思想,從 的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說明理由.
(Ⅱ)將頻率視為概率,對于2016年的某3天,記這3天中該居民區(qū) 的24小時平均濃度符合環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)的天數(shù)為
,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (
)在同一半周期內(nèi)的圖象過點
,
,
,其中
為坐標(biāo)原點,
為函數(shù)
圖象的最高點,
為函數(shù)
的圖象與
軸的正半軸的交點,
為等腰直角三角形.
(1)求 的值;
(2)將 繞原點
按逆時針方向旋轉(zhuǎn)角
,得到
,若點
恰好落在曲線
(
)上(如圖所示),試判斷點
是否也落在曲線
(
)上,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形 中,點
在線段
上,
,
,沿直線
將
翻折成
,使點
在平面
上的射影
落在直線
上.
(Ⅰ)求證:直線 平面
;
(Ⅱ)求二面角 的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系 中,直線
過
,傾斜角為
.以
為極點,
軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(Ⅰ)求直線 的參數(shù)方程和曲線
的直角坐標(biāo)方程;
(Ⅱ)已知直線 與曲線
交于
、
兩點,且
,求直線
的斜率
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖四邊形 中,
為的
內(nèi)角
的對邊,且滿足
.
(Ⅰ)證明: 成等差數(shù)列;
(Ⅱ)已知
求四邊形
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若執(zhí)行如圖的程序框圖,輸出S的值為4,則判斷框中應(yīng)填入的條件是( )
A.k<14?
B.k<15?
C.k<16?
D.k<17?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點在圓
:
上,而
為
在
軸上的投影,且點
滿足
,設(shè)動點
的軌跡為曲線
.
(1)求曲線的方程;
(2)若是曲線
上兩點,且
,
為坐標(biāo)原點,求
的面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com