在平面直角坐標系中,已知橢圓
的左焦點為
,且橢圓
的離心率
.
(1)求橢圓的方程;
(2)設橢圓的上下頂點分別為
,
是橢圓
上異于
的任一點,直線
分別交
軸于點
,證明:
為定值,并求出該定值;
(3)在橢圓上,是否存在點
,使得直線
與圓
相交于不同的兩點
,且
的面積最大?若存在,求出點
的坐標及對應的
的面積;若不存在,請說明理由.
(1);(2)
;(3)存在點
滿足題意,點
的坐標為
,
的面積為
.
解析試題分析:(1)由題目給出的條件直接列關于的方程組求解
的值,則橢圓方程可求;(2)由橢圓方程求出橢圓上下頂點的坐標,設出橢圓上的動點
,由直線方程的兩點式寫出直線
的方程,取
后得到
和
的長度,結合點
在橢圓上整體化簡運算可證出
為定值;(3)假設存在點
,使得直線
與圓
,相交于不同的兩點
,且
的面積最大,由點
在橢圓上得到關于
和
的關系式,由點到直線的距離公式求出原點
到直線的距離,由圓中的半徑,半弦長和弦心距之間的關系求出弦長,寫出
的面積后利用基本不等式求面積的最大值,利用不等式中等號成立的條件得到關于
和
的另一關系式,聯立后可求解
的坐標.
試題解析:
(1)由題意:,解得:
所以橢圓
(2) 由(1)可知,設
,
直線:
,令
,得
;
直線:
,令
,得
;
則,
而,所以
,
所以
(3)假設存在點滿足題意,則
,即
設圓心到直線的距離為
,則
,且
所以
所以
因為,所以
,所以
所以
當且僅當,即
時,
取得最大值
由,解得
所以存在點滿足題意,點
的坐標為
此時的面積為
.
考點:本題考查了橢圓的標準方程,考查了橢圓的簡單幾何性質,考查了直線和圓錐曲線的關系,直線與圓錐曲線聯系在一起的綜合題在高考中多以高檔題、壓軸題出現,主要涉及位置關系的判定,弦長問題、最值問題、對稱問題、軌跡問題等.突出考查了數形結合、分類討論、函數與方程、等價轉化等數學思想方法.
科目:高中數學 來源: 題型:解答題
已知兩點及
,點
在以
、
為焦點的橢圓
上,且
、
、
構成等差數列.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,動直線與橢圓
有且僅有一個公共點,點
是直線
上的兩點,且
,
. 求四邊形
面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓,若焦點在
軸上的橢圓
過點
,且其長軸長等于圓
的直徑.
(1)求橢圓的方程;
(2)過點作兩條互相垂直的直線
與
,
與圓
交于
、
兩點,
交橢圓于另一點
,設直線
的斜率為
,求弦
長;
(3)求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知拋物線:
和⊙
:
,過拋物線
上一點
作兩條直線與⊙
相切于
、
兩點,分別交拋物線為E、F兩點,圓心點
到拋物線準線的距離為
.
(Ⅰ)求拋物線的方程;
(Ⅱ)當的角平分線垂直
軸時,求直線
的斜率;
(Ⅲ)若直線在
軸上的截距為
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
(1)求橢圓的方程;
(2)若過點(2,0)的直線與橢圓
相交于兩點
,設
為橢圓上一點,且滿足
(
為坐標原點),當
時,求實數
取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知三點P(5,2)、F1(-6,0)、F2(6,0)。
(1)求以F1、F2為焦點且過點P的橢圓的標準方程;
(2)設點P、F1、F2關于直線y=x的對稱點分別為,求以
為焦點且過
點的雙曲線的標準方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
橢圓以坐標軸為對稱軸,且經過點、
.記其上頂點為
,右頂點為
.
(1)求圓心在線段上,且與坐標軸相切于橢圓焦點的圓的方程;
(2)在橢圓位于第一象限的弧上求一點
,使
的面積最大.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知雙曲線(a>0,b>0)的離心率
,過點A(0,-b)和B(a,0)的直線與原點的距離是
.
(Ⅰ)求雙曲線的方程及漸近線方程;
(Ⅱ)若直線y=kx+5 (k≠0)與雙曲線交于不同的兩點C、D,且兩點都在以A為圓心的同一個圓上,求k的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com