【題目】已知函數 , (Ⅰ)求函數f(x)的單調區間,并判斷是否有極值;
(Ⅱ)若對任意的x>1,恒有ln(x﹣1)+k+1≤kx成立,求k的取值范圍;
(Ⅲ)證明: (n∈N+ , n≥2).
【答案】解:(Ⅰ) ,(x>0),
, 即x∈(0,1),f'(x)>0,當x∈(1,+∞),f'(x)<0,
∴f(x)在區間(0,1)上單調遞增,在區間(1,+∞)上單調遞減,
在x=1處取得極大值,極大值為f(1)=1,無極小值.
(Ⅱ)方法1:∵ln(x﹣1)+k+1≤kx, ,
k≥f(x﹣1)max對任意的x>1恒成立,由(1)知f(x)max=f(1)=1,
則有f(x﹣1)max=1,∴k≥1.
方法2:記g(x)=ln(x﹣1)﹣k(x﹣1)+1, ,
當k≤0時,g'(x)≥0;
當k>0時,由g'(x)>0得 ,
即當k≤0時,g(x)在(1,+∞)上為增函數;
當k>0時, 上為增函數;在
上為減函數.
∵對任意的x>1,恒有ln(x﹣1)+k+1≤kx成立,
即要求g(x)≤0恒成立,
∴k>0符合,且 ,得k≥1.
(Ⅲ)證明: ,由(Ⅰ)知
,
則 (當且僅當x=1取等號).
令x=n2(n∈N* , n≥2),即 ,則有
∴ ,
∴
【解析】(Ⅰ) ,(x>0),
,分別解出f'(x)>0,f'(x)<0,即可得出單調區間、極值;(Ⅱ)方法1:由ln(x﹣1)+k+1≤kx,分離參數可得:k≥f(x﹣1)max對任意的x>1恒成立,由(I)即可得出. 方法2:記g(x)=ln(x﹣1)﹣k(x﹣1)+1,
,對k分類討論研究其單調性即可得出;(Ⅲ)
,由(Ⅰ)知:
(當且僅當x=1取等號).令x=n2(n∈N* , n≥2),即
,再利用“累加求和”、“裂項求和”即可得出.
【考點精析】通過靈活運用利用導數研究函數的單調性和函數的最大(小)值與導數,掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減;求函數
在
上的最大值與最小值的步驟:(1)求函數
在
內的極值;(2)將函數
的各極值與端點處的函數值
,
比較,其中最大的是一個最大值,最小的是最小值即可以解答此題.
科目:高中數學 來源: 題型:
【題目】已知函數f(x),(x∈R)上任一點(x0 , y0)的切線方程為y﹣y0=(x0﹣2)(x02﹣1)(x﹣x0),那么函數f(x)的單調遞減區間是( )
A.[﹣1,+∞)
B.(﹣∞,2]
C.(﹣∞,﹣1)和(1,2)
D.[2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,CAB=90°,AB=AC=2,AA1= ,M為BC的中點,P為側棱BB1上的動點.
(1)求證:平面APM⊥平面BB1C1C;
(2)試判斷直線BC1與AP是否能夠垂直.若能垂直,求PB的長;若不能垂直,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖正方體ABCD﹣A1B1C1D1 , M,N分別為A1D1和AA1的中點,則下列說法中正確的個數為( )
①C1M∥AC;
②BD1⊥AC;
③BC1與AC的所成角為60°;
④B1A1、C1M、BN三條直線交于一點.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩條直線l1:2x+y﹣2=0與l2:2x﹣my+4=0.
(1)若直線l1⊥l2 , 求直線l1與l2交點P的坐標;
(2)若l1 , l2以及x軸圍成三角形的面積為1,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知一個遞增的等差數列{an}的前三項的和為﹣3,前三項的積為8.數列 的前n項和為
.
(1)求數列{an}的通項公式.
(2)求數列 的通項公式.
(3)是否存在一個等差數列{cn},使得等式 對所有的正整數n都成立.若存在,求出所有滿足條件的等差數列{cn}的通項公式,并求數列{bn}的前n項和Tn;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設Ox、Oy是平面內相交成45°角的兩條數軸, 、
分別是x軸、y軸正方向同向的單位向量,若向量
=x
+y
,則把有序數對(x,y)叫做向量
在坐標系xOy中的坐標,在此坐標系下,假設
=(﹣2,2
),
=(2,0),
=(5,﹣3
),則下列命題不正確的是( )
A. =(1,0)
B.| |=2
C. ∥
D. ⊥
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com