【題目】已知首項都是1的兩個數列{an},{bn} 滿足anbn+1﹣an+1bn﹣2an+1an=0.
(1)令 ,求證數列{cn}為等差數列;
(2)若 ,求數列{bn}的前n項和Sn .
【答案】
(1)解:∵anbn+1﹣an+1bn﹣2bn+1bn=0,
∴ .
∵cn= ,
∴cn+1﹣cn=2,
∵首項是1的兩個數列{an},{bn},
∴數列{cn}是以1為首項,2為公差的等差數列,
∴cn=2n﹣1
(2)解:∵bn=3n﹣1,cn═ ,
∴an=(2n﹣1)3n﹣1,
∴Sn=1×30+3×31+…+(2n﹣1)×3n﹣1,
∴3Sn=1×3+3×32+…+(2n﹣1)×3n,
∴﹣2Sn=1+2(31+…+3n﹣1)﹣(2n﹣1)3n,
∴Sn=(n﹣1)3n+1
【解析】(1)由anbn+1﹣an+1bn﹣2bn+1bn=0,cn= ,可得數列{cn}是以1為首項,2為公差的等差數列,即可求數列{cn}的通項公式;(2)用錯位相減法來求和.
【考點精析】本題主要考查了等差數列的通項公式(及其變式)和數列的前n項和的相關知識點,需要掌握通項公式:或
;數列{an}的前n項和sn與通項an的關系
才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ),x∈R(其中 )的圖象與x軸的交點中,相鄰兩個交點之間的距離為
,且圖象上一個最低點為
. (Ⅰ)求f(x)的解析式;
(Ⅱ)當 ,求f(x)的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】綜合題
(1)已知α為第二象限角,且 sinα= ,求
的值.
(2)已知α∈(0, ),β∈(0,π),且tan(α﹣β)=
,tanβ=﹣
,求tan(2α﹣β)的值及角2α﹣β.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在等差數列{an}中,a14+a15+a16=﹣54,a9=﹣36,Sn為其前n項和.
(1)求Sn的最小值,并求出相應的n值;
(2)求Tn=|a1|+|a2|+…+|an|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校有教職員工150人,其中高級職稱15人,中級職稱45人,一般職員90人,現在用分層抽樣抽取30人,則樣本中各職稱人數分別為( )
A.5,10,15
B.3,9,18
C.3,10,17
D.5,9,16
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設直線m與平面α相交但不垂直,則下列說法中,正確的是 ( )
A.在平面α內有且只有一條直線與直線m垂直
B.過直線m有且只有一個平面與平面α垂直
C.與直線m垂直的直線不可能與平面α平行
D.與直線m平行的平面不可能與平面α垂直
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知過定點P(2,0)的直線l與曲線y= 相交于A、B兩點,O為坐標原點,當△AOB的面積取最大時,直線的傾斜角可以是:①30°;②45°;③60°;④120°⑤150°.其中正確答案的序號是 . (寫出所有正確答案的序號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com