【題目】下列說法:①第二象限角比第一象限角大;②設(shè)是第二象限角,則
;③三角形的內(nèi)角是第一象限角或第二象限角;④函數(shù)
是最小正周期為
的周期函數(shù);⑤在△ABC中,若
,則A>B.其中正確的是___________ (寫出所有正確說法的序號)
【答案】②⑤
【解析】
①根據(jù)象限角的概念,舉反例可知錯(cuò)誤.
②對 變形,化為
的三角函數(shù)式,根據(jù)三角函數(shù)值在各象限的符號,判斷出差式的符號作出判斷.
③對于直角,我們說不屬于任一象限.③錯(cuò)誤
④取,則
,此時(shí)
,不為周期函數(shù).
⑤根據(jù)正弦定理,若 則
,根據(jù)大邊對大角原則,應(yīng)有
:①由角的概念的推廣,可知①錯(cuò),比如是第二象限角,
是第-象限角,但
.①錯(cuò)誤
②.設(shè)
是第二象限角,
.②正確.
③三角形的內(nèi)角可為銳角、直角或鈍角.對于直角,我們說不屬于任一象限.③錯(cuò)誤.
④取,則
,此時(shí)
,所以函數(shù)
不最小正周期為
的周期函數(shù).④錯(cuò)誤
⑤在中,若
,根據(jù)正弦定理:
則
,根據(jù)大邊對大角原則,應(yīng)有
.⑤正確.
故答案為:②⑤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
為正方形,
底面
,
,過點(diǎn)
的平面與棱
,
,
分別交于點(diǎn)
,
,
(
,
,
三點(diǎn)均不在棱的端點(diǎn)處).
(Ⅰ)求證:平面平面
;
(Ⅱ)若平面
,求
的值;
(Ⅲ)直線是否可能與平面
平行?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙三人進(jìn)行羽毛球練習(xí)賽,其中兩人比賽,另一人當(dāng)裁判,每局比賽結(jié)束時(shí),負(fù)的一方在下一局當(dāng)裁判,設(shè)各局中雙方獲勝的概率均為 ,各局比賽的結(jié)果都相互獨(dú)立,第1局甲當(dāng)裁判.
(1)求第4局甲當(dāng)裁判的概率;
(2)X表示前4局中乙當(dāng)裁判的次數(shù),求X的數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 是雙曲線
的右焦點(diǎn),過點(diǎn)
作
的一條漸近線的垂線,垂足為
,線段
與
相交于點(diǎn)
,記點(diǎn)
到
的兩條漸近線的距離之積為
,若
,則該雙曲線的離心率是( )
A.
B.2
C. 3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時(shí)針方向滾動,M和N是小圓的一條固定直徑的兩個(gè)端點(diǎn).那么,當(dāng)小圓這樣滾過大圓內(nèi)壁的一周,點(diǎn)M,N在大圓內(nèi)所繪出的圖形大致是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解甲、乙兩校高三年級學(xué)生某次期末聯(lián)考地理成績情況,從這兩學(xué)校中分別隨機(jī)抽取30名高三年級的地理成績(百分制)作為樣本,樣本數(shù)據(jù)的莖葉圖如圖所示:
(Ⅰ)若乙校高三年級每位學(xué)生被抽取的概率為0.15,求乙校高三年級學(xué)生總?cè)藬?shù);
(Ⅱ)根據(jù)莖葉圖,分析甲、乙兩校高三年級學(xué)生在這次聯(lián)考中地理成績;
(Ⅲ)從樣本中甲、乙兩校高三年級學(xué)生地理成績不及格(低于60分為不及格)的學(xué)生中隨機(jī)抽取2人,求至少抽到一名乙校學(xué)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面
是平行四邊形,
平面
,點(diǎn)
,
分別為
,
的中點(diǎn),且
,
.
(1)證明: 平面
;
(2)設(shè)直線與平面
所成角為
,當(dāng)
在
內(nèi)變化時(shí),求二面角
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個(gè)關(guān)于圓錐曲線的命題中:
①雙曲線與橢圓
有相同的焦點(diǎn);
②在平面內(nèi),設(shè)為兩個(gè)定點(diǎn),
為動點(diǎn),且
,其中常數(shù)
為正實(shí)數(shù),則動點(diǎn)
的軌跡為橢圓;
③方程的兩根可以分別作為橢圓和雙曲線的離心率;
④過雙曲線的右焦點(diǎn)
作直線
交雙曲線于
兩點(diǎn),若
,則這樣的直線
有且僅有3條.其中真命題的序號為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知的方程為
,平面內(nèi)兩定點(diǎn)
、
.當(dāng)
的半徑取最小值時(shí):
(1)求出此時(shí)的值,并寫出
的標(biāo)準(zhǔn)方程;
(2)在軸上是否存在異于點(diǎn)
的另外一個(gè)點(diǎn)
,使得對于
上任意一點(diǎn)
,總有
為定值?若存在,求出點(diǎn)
的坐標(biāo),若不存在,請說明你的理由;
(3)在第(2)問的條件下,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com