【題目】如圖,直三棱柱中,底面
為等腰直角三角形,
,
,
是側(cè)棱
上的點(diǎn).
(1)若,證明:
是
的中點(diǎn);
(2)若,求二面角
的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)利用勾股定理得出,再由
可得知
為等邊三角形,利用勾股定理得出
,進(jìn)而可證得結(jié)論成立;
(2)以點(diǎn)為坐標(biāo)原點(diǎn),
、
、
所在直線分別為
、
、
軸建立空間直角坐標(biāo)系
,設(shè)
,利用空間向量法可求得二面角
的余弦值.
(1)由直三棱柱得
平面
,
、
平面
,
,
,
為等腰直角三角形,
,
且
,
由勾股定理得,
,
是等邊三角形,則
,
由勾股定理得,
為
的中點(diǎn);
(2)易知、
、
兩兩垂直,以點(diǎn)
為坐標(biāo)原點(diǎn),
、
、
所在直線分別為
、
、
軸建立如下圖所示的空間直角坐標(biāo)系
,
設(shè),則
、
、
,
,
,
設(shè)平面的法向量為
,由
,得
,
令,得
,
,
,
又平面的法向量為
,
,
由圖形可知,二面角為銳角,所以,二面角
的余弦值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,由
經(jīng)過伸縮變換
得到曲線
,以原點(diǎn)為極點(diǎn),
軸非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)求曲線的極坐標(biāo)方程以及曲線
的直角坐標(biāo)方程;
(2)若直線的極坐標(biāo)方程為
,
與曲線
、曲線
在第一象限交于
、
,且
,點(diǎn)
的極坐標(biāo)為
,求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】焦點(diǎn)在x軸上的橢圓C:經(jīng)過點(diǎn)
,橢圓C的離心率為
.
,
是橢圓的左、右焦點(diǎn),P為橢圓上任意點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若點(diǎn)M為的中點(diǎn)(O為坐標(biāo)原點(diǎn)),過M且平行于OP的直線l交橢圓C于A,B兩點(diǎn),是否存在實(shí)數(shù)
,使得
;若存在,請(qǐng)求出
的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的離心率為
,過橢圓的焦點(diǎn)且與長(zhǎng)軸垂直的弦長(zhǎng)為1.
(1)求橢圓C的方程;
(2)設(shè)點(diǎn)M為橢圓上第一象限內(nèi)一動(dòng)點(diǎn),A,B分別為橢圓的左頂點(diǎn)和下頂點(diǎn),直線MB與x軸交于點(diǎn)C,直線MA與y軸交于點(diǎn)D,求證:四邊形ABCD的面積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】阿基米德是古希臘偉大的哲學(xué)家、數(shù)學(xué)家、物理學(xué)家,對(duì)幾何學(xué)、力學(xué)等學(xué)科作出過卓越貢獻(xiàn).為調(diào)查中學(xué)生對(duì)這一偉大科學(xué)家的了解程度,某調(diào)查小組隨機(jī)抽取了某市的100名高中生,請(qǐng)他們列舉阿基米德的成就,把能列舉阿基米德成就不少于3項(xiàng)的稱為“比較了解”,少于三項(xiàng)的稱為“不太了解”.他們的調(diào)查結(jié)果如下:
0項(xiàng) | 1項(xiàng) | 2項(xiàng) | 3項(xiàng) | 4項(xiàng) | 5項(xiàng) | 5項(xiàng)以上 | |
理科生(人) | 1 | 10 | 17 | 14 | 14 | 10 | 4 |
文科生(人) | 0 | 8 | 10 | 6 | 3 | 2 | 1 |
(1)完成如下列聯(lián)表,并判斷是否有
的把握認(rèn)為,了解阿基米德與選擇文理科有關(guān)?
比較了解 | 不太了解 | 合計(jì) | |
理科生 | |||
文科生 | |||
合計(jì) |
(2)在抽取的100名高中生中,按照文理科采用分層抽樣的方法抽取10人的樣本.
(i)求抽取的文科生和理科生的人數(shù);
(ii)從10人的樣本中隨機(jī)抽取3人,用表示這3人中文科生的人數(shù),求
的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸的兩個(gè)端點(diǎn)分別為、
.短軸的兩個(gè)端點(diǎn)分別為
,
.菱形
的面積為
,離心率
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),經(jīng)過點(diǎn)M作斜率不為0的直線
交橢圓C于A、B兩點(diǎn),若
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)討論函數(shù)的單調(diào)性;
(2)若存在直線,使得對(duì)任意的
,
,對(duì)任意的
,
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,多面體是由底面為的直四棱柱被截面
所截而得到的,該直四棱柱的底面為菱形,其中
,
,
,
.
(1)求的長(zhǎng);
(2)求平面與底面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:+
=1(a>b>0)的離心率為
,直線l:x+2y=4與橢圓有且只有一個(gè)交點(diǎn)T.
(I)求橢圓C的方程和點(diǎn)T的坐標(biāo);
(Ⅱ)O為坐標(biāo)原點(diǎn),與OT平行的直線l′與橢圓C交于不同的兩點(diǎn)A,B,直線l′與直線l交于點(diǎn)P,試判斷是否為定值,若是請(qǐng)求出定值,若不是請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com