已知拋物線和點
,過點P的直線
與拋物線交與
兩點,設點P剛好為弦
的中點。
(1)求直線的方程
(2)若過線段上任一
(不含端點
)作傾斜角為
的直線
交拋物線于
,類比圓中的相交弦定理,給出你的猜想,若成立,給出證明;若不成立,請說明理由。
(3)過P作斜率分別為的直線
,
交拋物線于
,
交拋物線于
,是否存在
使得(2)中的猜想成立,若存在,給出
滿足的條件。若不存在,請說明理由。
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
x2 | 2 |
查看答案和解析>>
科目:高中數學 來源: 題型:
|
|
|
|
查看答案和解析>>
科目:高中數學 來源: 題型:
(本小題滿分15分)已知拋物線
上的一點(m,1)到焦點的距離為
.點
是拋物線上任意一點(除去頂點),過點
與
的直線和拋物線交于點
,過點
與的
直線和拋物線交于點
.分別以點
,
為切點的拋物線的切線交于點P′.
(I)求拋物線的方程;
(II)求證:點P′在y軸上.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com