(1)求橢圓C的方程;
(2)已知A為橢圓C的左頂點,直線l過右焦點F2與橢圓C交于M、N兩點.若AM,AN的斜率k1,k2滿足k1+k2=,求直線l的方程;
(3)已知P是橢圓C上位于第一象限內的點,△PF1F2的重心為G,內心為I,求證:GI∥F1F2.
解:(1) 得
∴橢圓的標準方程為
=1.
(2)由(1)得F2(1,0),A(-2,0).
若直線l與x軸垂直,則k1+k2=0,不合題意;
設直線l為y=k(x-1)(k≠0),設直線與橢圓的交點坐標分別為M(x1,y1),N(x2,y2).
由得(3+4k2)x2-8k2x+4k2-12=0,
Δ=9k2-9>0,得k>1或k<-1,
x1+x2=,x1·x2=
,
y1+y2=k(x1+x2-2)=k(-2)=
,
∵k1=,k2=
,
∴k1+k2=+
=
=,
∴x1y2+x2y1=.
∵x1y2+x2y1=x1[k(x2-1)]+x2[k(x1-1)]=,
∴,k=2,符合k>1.
故所求直線MN的方程為y=2(x-1).
(3)證明:設PI交F1F2于Q,則,
,
∴.∴
=2.∴
,IG∥F1F2.
科目:高中數學 來源:2013-2014學年人教版高考數學文科二輪專題復習提分訓練22練習卷(解析版) 題型:解答題
設橢圓C:+
=1(a>b>0)過點(0,4),離心率為
.
(1)求C的方程;
(2)求過點(3,0)且斜率為的直線被C所截線段的中點坐標.
查看答案和解析>>
科目:高中數學 來源:2013-2014學年人教版高考數學文科二輪專題復習提分訓練22練習卷(解析版) 題型:選擇題
設橢圓C:+
=1(a>b>0)的左、右焦點分別為F1,F2,P是C上的點,PF2⊥F1F2,∠PF1F2=30°,則C的離心率為( )
(A) (B)
(C)
(D)
查看答案和解析>>
科目:高中數學 來源:2014屆遼寧省丹東市高二下學期期初摸底文科數學卷(解析版) 題型:解答題
已知橢圓C:=1(a>b>0)的離心率為
,短軸一個端點到右焦點的距離為
.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設直線l與橢圓C交于A、B兩點,坐標原點O到直線l的距離為,求△AOB面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
(1)求橢圓C的方程;
(2)已知A為橢圓C的左頂點,直線l過右焦點F2與橢圓C交于M、N兩點,若AM、AN的斜率k1,k2滿足k1+k2=,求直線l的方程;
(3)已知P是橢圓C上位于第一象限內的點,△PF1F2的重心為G,內心為I,求證:IG∥F1F2.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com