雙曲線x2-y2=1的左焦點為F,點P為左支下半支上任意一點(異于頂點),則直線PF的斜率的變化范圍是( )
A.(-∞,0)
B.(1,+∞)
C.(-∞,0)∪(1,+∞)
D.(-∞,-1)∪(1,+∞)
【答案】分析:當點P向雙曲線右下方無限移動時,直線PF逐漸與漸近線平行,但是永不平行,所以傾斜角大于45°;當點P逐漸靠近頂點時,傾斜角逐漸增大,但是小于180°.由此可知直線PF的斜率的變化范圍(-∞,0)∪(1,+∞).
解答:解:由題意條件知雙曲線的漸近線傾斜角為45°,
當點P向雙曲線右下方無限移動時,直線PF逐漸與漸近線平行,但是永不平行,所以傾斜角大于45°;
當點P逐漸靠近頂點時,傾斜角逐漸增大,但是小于180°.
所以直線PF的傾斜角的范圍是(45°,180°).
由此可知直線PF的斜率的變化范圍(-∞,0)∪(1,+∞).
故選C.
點評:本題考查雙曲線的性質和應用,解題時要認真審題,仔細解答.