【題目】如圖, 表示神風摩托車廠一天的銷售收入與摩托車銷售量的關系;
表示摩托車廠一天的銷售成本與銷售量的關系.
(1)寫出銷售收入與銷售量之間的函數關系式;
(2)寫出銷售成本與銷售量之間的函數關系式;
(3)當一天的銷售量為多少輛時,銷售收入等于銷售成本;
(4)當一天的銷售超過多少輛時,工廠才能獲利?(利潤=收入-成本)
科目:高中數學 來源: 題型:
【題目】已知點為圓
的圓心,
是圓上動點,點
在圓的半徑
上,且有點
和
上的點
,滿足
(1)當在圓上運動時,求點
的軌跡方程;
(2)若斜率為的直線
與圓
相切,與(1)中所求點
的軌跡教育不同的兩點
是坐標原點,且
時,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過點的直線與圓
相切,且與直線
垂直,則
( )
A. 2 B. 1 C. D.
【答案】A
【解析】因為點P(2,2)滿足圓的方程,所以P在圓上,
又過點P(2,2)的直線與圓相切,且與直線axy+1=0垂直,
所以切點與圓心連線與直線axy+1=0平行,
所以直線axy+1=0的斜率為: .
故選A.
點睛:對于直線和圓的位置關系的問題,可用“代數法”或“幾何法”求解,直線與圓的位置關系體現了圓的幾何性質和代數方法的結合,“代數法”與“幾何法”是從不同的方面和思路來判斷的,解題時不要單純依靠代數計算,若選用幾何法可使得解題過程既簡單又不容易出錯.
【題型】單選題
【結束】
23
【題目】設分別是雙曲線
的左、右焦點.若點
在雙曲線上,且
,則
( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高二年級進行了百科知識大賽,為了了解高二年級900名同學的比賽情況,現在甲、乙兩個班級各隨機抽取了10名同學的成績,比賽成績滿分為100分,80分以上可獲得二等獎,90分以上可以獲得一等獎,已知抽取的兩個班學生的成績(單位:分)數據的莖葉圖如圖1所示:
(1)比較兩組數據的分散程度(只需要給出結論),并求出甲組數據的頻率分布直方圖如圖2中所示的值;
(2)現從兩組數據中獲獎的學生里分別隨機抽取一人接受采訪,求被抽中的甲班學生成績高于乙班學生成績的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】學校射擊隊的某一選手射擊一次,其命中環數的概率如表:
命中環數 | 10環 | 9環 | 8環 | 7環 |
概率 | 0.32 | 0.28 | 0.18 | 0.12 |
求該選手射擊一次,
(1)命中9環或10環的概率.
(2)至少命中8環的概率.
(3)命中不足8環的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在如圖所示的多面體中, 平面
,
平面
,
,且
,
是
的中點.
(Ⅰ)求證: .
(Ⅱ)求平面與平面
所成的銳二面角的余弦值.
(Ⅲ)在棱上是否存在一點
,使得直線
與平面
所成的角是
.若存在,指出點
的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓過兩點
,
,且圓心
在直線
上.
(Ⅰ)求圓的標準方程;
(Ⅱ)直線過點
且與圓
有兩個不同的交點
,
,若直線
的斜率
大于0,求
的取值范圍;
(Ⅲ)在(Ⅱ)的條件下,是否存在直線使得弦
的垂直平分線過點
,若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=a(x-5)2+6lnx,其中a∈R,曲線y=f(x)在點(1,f(1))處的切線與y軸相交于點(0,6).
(1)確定a的值;
(2)求函數f(x)的單調區間與極值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com