分析 (1)當n≥2時,Sn-Sn-1=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$⇒Sn-Sn-1=2Sn•Sn-1(n≥2),取倒數,可得$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=2,利用等差數列的定義即可證得:數列{$\frac{1}{{S}_{n}}$}是等差數列;
(2)由(1)可知,$\frac{1}{{S}_{n}}$=$\frac{1}{{S}_{1}}$+(n-1)×2=2n-1⇒Sn=$\frac{1}{2n-1}$.n≥2時,$\frac{1}{n}$$\frac{1}{n(2n-1)}$<$\frac{1}{n(2n-2)}$=$\frac{1}{2}$•$\frac{1}{n(n-1)}$=$\frac{1}{2}$($\frac{1}{n-1}$-$\frac{1}{n}$),從而可證當n≥2時,S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn<$\frac{3}{2}$.
解答 (本題滿分12分)
證明:(1)當n≥2時,Sn-Sn-1=$\frac{2{{S}_{n}}^{2}}{2{S}_{n}-1}$,
整理得:Sn-Sn-1=2Sn•Sn-1(n≥2),
$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=2,從而{$\frac{1}{{S}_{n}}$}構成以1為首項,2為公差的等差數列.-------(6分)
(2)由(1)可知,$\frac{1}{{S}_{n}}$=$\frac{1}{{S}_{1}}$+(n-1)×2=2n-1,
∴Sn=$\frac{1}{2n-1}$.
∴當n≥2時,$\frac{1}{n}$$\frac{1}{n(2n-1)}$<$\frac{1}{n(2n-2)}$=$\frac{1}{2}$•$\frac{1}{n(n-1)}$=$\frac{1}{2}$($\frac{1}{n-1}$-$\frac{1}{n}$),
∴S1+$\frac{1}{2}$S2+$\frac{1}{3}$S3+…+$\frac{1}{n}$Sn<1+$\frac{1}{2}$(1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{n-1}$-$\frac{1}{n}$)<$\frac{3}{2}$-$\frac{1}{2n}$<$\frac{3}{2}$.
點評 本題考查數列遞推式的應用,考查等差數列的判定,考查等價轉化思想,突出裂項法、放縮法應用的考查,屬于難題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-1,+∞) | B. | (-1,0) | C. | (-2,+∞) | D. | (-2,0) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com