(1)從1,2,3,4,5五個數中依次取2個數,求這兩個數的差的絕對值等于1的概率;
(2)△ABC中,∠B=60°,∠C=45°,高AD=,在BC邊上任取一點M,求
的概率.
科目:高中數學 來源: 題型:
查看答案和解析>>
科目:高中數學 來源: 題型:
某日用品按行業質量標準分成五個等級,等級系數X依次為1,2,3,4,5.現從一批該日用品中隨機抽取20件,對其等級系數進行統計分析,得到頻率分布表如下:
X | 1 | 2 | 3 | 4 | 5 |
頻率 | a | 0.2 | 0.45 | b | c |
(1)若所抽取的20件日用品中,等級系數為4的恰有3件,等級系數為5的恰有2件,求a,b,c的值;
(2)在(1)的條件下,將等級系數為4的3件日用品記為x1,x2,x3,等級系數為5的2件日用品記為y1,y2,現從x1,x2,x3,y1,y2這5件日用品中任取兩件(假定每件日用品被取出的可能性相同),寫出所有可能的結果,并求這兩件日用品的等級系數恰好相等的概率.
查看答案和解析>>
科目:高中數學 來源:江西省重點中學盟校2011-2012學年高三第一次聯考(數學文) 題型:解答題
某日用品按行業質量標準分成五個等級,等級系數X依次為1,2,3,4,5.現從一批該日用品中隨機抽取20件,對其等級系數進行統計分析,得到頻率分布表如下:
X |
1 |
2 |
3 |
4 |
5 |
頻率 |
a |
0.2 |
0.4 |
b |
c |
(I)若所抽取的20件日用品中,等級系數為4的恰有3件,等級系數為5的恰有2件,求a,b,c的值;
(Ⅱ)在(I)的條件下,將等級系數為4的3件日用品記為x1,x2,x3,等級系數為5的2件日用品記為y1,y2,現從x1,x2,x3,y1,y2這5件日用品中任取兩件(假定每件日用品被取出的可能性相同),寫出所有可能的結果,并求這兩件日用品的等級系數恰好相等的概率.
查看答案和解析>>
科目:高中數學 來源:2011-2012學年山東省高考模擬預測數學文試卷(解析版) 題型:解答題
一個袋中裝有四個形狀大小完全相同的球,球的編號分別為1,2,3,4.
(I)從袋中隨機抽取一個球,將其編號記為,然后從袋中余下的三個球中再隨機抽取一個球,將其編號記為
.求關于
的一元二次方程
有實根的概率;
(II)先從袋中隨機取一個球,該球的編號為m,將球放回袋中,然后再從袋中隨機取一個球,該球的編號為n.若以 作為點P的坐標,求點P落在區域
內的概率.
【解析】第一問利用古典概型概率求解所有的基本事件數共12種,然后利用方程有實根,則滿足△=4a2-4b2≥0,即a2≥b2。,這樣求得事件發生的基本事件數為6種,從而得到概率。第二問中,利用所有的基本事件數為16種。即基本事件(m,n)有:(1,1) (1,2) (1,3) (1,4)
(2,1) (2,2) (2,3) (2,4) (3,1)
(3,2) (3,3)
(3,4) (4,1) (4,2) (4,3)
(4,4)共16種。在求解滿足
的基本事件數為(1,1) (2,1) (2,2) (3,1) 共4種,結合古典概型求解得到概率。
(1)基本事件(a,b)有:(1,2) (1,3) (1,4) (2,1) (2,3) (2,4) (3,1) (3,2) (3,4) (4,1) (4,2) (4,3)共12種。
∵有實根, ∴△=4a2-4b2≥0,即a2≥b2。
記“有實根”為事件A,則A包含的事件有:(2,1) (3,1)
(3,2) (4,1) (4,2) (4,3) 共6種。
∴PA.= 。 …………………6分
(2)基本事件(m,n)有:(1,1) (1,2) (1,3) (1,4) (2,1) (2,2) (2,3) (2,4) (3,1) (3,2) (3,3) (3,4) (4,1) (4,2) (4,3) (4,4)共16種。
記“點P落在區域內”為事件B,則B包含的事件有:
(1,1) (2,1) (2,2) (3,1) 共4種。∴PB.=
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com