【題目】已知函數在
處取得極小值.
(1)求實數的值;
(2)若函數存在極大值與極小值,且函數
有兩個零點,求實數
的取值范圍.(參考數據:
,
)
【答案】(1)或
(2)
【解析】
(1)根據極值的定義,求出或
,再對
的兩種取值分別進行驗證;
(2)由第(1)問先確定,得到
,利用導數研究函數
的單調性,即函數
在
上單調遞增,在
上單調遞減,再結合零點存在定理的條件,得到參數
的取值范圍.
解:(1)由題意得.
因為函數在
處取得極小值,
依題意知,解得
或
.
當時,
,若
,
,則函數
單調遞減,
若,
,則函數
單調遞增,
所以,當時,
取得極小值,無極大值,符合題意.
當時,
,若
或
,
,則函數
單調遞增;
若,
,則函數
單調遞減,所以函數
在
處取得極小值,
處取得極大值,符合題意,
綜上,實數或
.
(2)因為函數存在極大值與極小值,所以由(1)知,
.
所以,
.
當時,
,故函數
在
上單調遞增,
當時,令
,則
,所以當
或
時,
,
單調遞增,
當時,
,
單調遞減,
因為,
,所以當
時,
,故
在
上單調遞減.
因為函數在
上有兩個零點,所以
,所以
.
取,
;
取,
,
所以,實數的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】關于圓周率,數學發展史上出現過許多有創意的求法,如著名的普豐實驗和查理斯實驗.受其啟發,我們也可以通過設計下面的實驗來估計
的值:先請120名同學每人隨機寫下一個x,y都小于1的正實數對
,再統計其中x,y能與1構成鈍角三角形三邊的數對
的個數m,最后根據統計個數m估計
的值.如果統計結果是
,那么可以估計
的值為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校為了選拔學生參加“XX市中學生知識競賽”,先在本校進行選拔測試,若該校有100名學生參加選拔測試,并根據選拔測試成績作出如圖所示的頻率分布直方圖.
(1)根據頻率分布直方圖,估算這100名學生參加選拔測試的平均成績;
(2)該校推薦選拔測試成績在110以上的學生代表學校參加市知識競賽,為了了解情況,在該校推薦參加市知識競賽的學生中隨機抽取2人,求選取的兩人的選拔成績在頻率分布直方圖中處于不同組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平行六面體ABCD-A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1=,∠BAD=120°.
(1)求異面直線A1B與AC1所成角的余弦值;
(2)求二面角B-A1D-A的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】至2018年底,我國發明專利申請量已經連續8年位居世界首位,下表是我國2012年至2018年發明專利申請量以及相關數據.
總計 | ||||||||
年代代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 28 |
申請量 | 65 | 82 | 92 | 110 | 133 | 138 | 154 | 774 |
65 | 164 | 276 | 440 | 665 | 828 | 1078 | 3516 |
注:年代代碼1~7分別表示2012~2018.
(1)可以看出申請量每年都在增加,請問這幾年中那一年的增長率達到最高,最高是多少?
(2)建立關于
的回歸直線方程(精確到0.01),并預測我國發明專利申請量突破200萬件的年份.
參考公式:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線(α為參數)經過伸縮變換
得到曲線C2.以坐標原點為極點,x軸正半軸為極軸建立極坐標系.
(1)求C2的普通方程;
(2)設曲線C3的極坐標方程為,且曲線C3與曲線C2相交于M,N兩點,點P(1,0),求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解甲、乙兩個快遞公司的工作狀況,假設同一個公司快遞員的工作狀況基本相同,現從甲、乙兩公司各隨機抽取一名快遞員,并從兩人某月(30天)的快遞件數記錄結果中隨機抽取10天的數據,制表如下:
甲公司某員工A | 乙公司某員工B | |||||||||||||
3 | 9 | 6 | 5 | 8 | 3 | 3 | 2 | 3 | 4 | 6 | 6 | 6 | 7 | 7 |
0 | 1 | 4 | 4 | 2 | 2 | 2 |
每名快遞員完成一件貨物投遞可獲得的勞務費情況如下:
甲公司規定每件4.5元;乙公司規定每天35件以內(含35件)的部分每件4元,超出35件的部分每件7元.
(1)根據表中數據寫出甲公司員工A在這10天投遞的快遞件數的平均數和眾數;
(2)為了解乙公司員工B的每天所得勞務費的情況,從這10天中隨機抽取1天,他所得的勞務費記為(單位:元),求
的分布列和數學期望;
(3)根據表中數據估算兩公司的每位員工在該月所得的勞務費.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com