【題目】如圖1,在直角梯形ABCD中,AD∥BC,AB⊥BC,BD⊥DC,點E是BC邊的中點,將△ABD沿BD折起,使平面ABD⊥平面BCD,連接AE,AC,DE,得到如圖2所示的幾何體.
(Ⅰ)求證:AB⊥平面ADC;
(Ⅱ)若AD=2,直線CA與平面ABD所成角的正弦值為,求二面角E-AD-C的余弦值.
【答案】(Ⅰ)見解析; (Ⅱ).
【解析】試題分析:(1)有平面平面
,證得
,再根據(jù)線面垂直的判定定理,即可作出證明;
(Ⅱ)現(xiàn)證得為直線
與平面
所成的角,在
中,得到
的值,即可求解
,建立空間直角坐標(biāo)系
,利用空間向量即可求解二面角的大小.
試題分析:(Ⅰ)證明:因為平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,
又DC⊥BD所以DC⊥平面ABD,所以DC⊥AB,
又AD⊥AB ,所以AB⊥平面ADC
(Ⅱ)因CD⊥平面ABD,所以∠CAD為直線CA與平面ABD所成的角,
CD⊥平面ABD所以CD⊥AD
則
則,依題意得
所以
,
即,所以
取BD的中點O,連結(jié)AO,EO,因為,∴AO⊥BD,平面ABD⊥平面BCD,∴AO⊥平面BCD
如圖所示建立空間直角坐標(biāo)系,
則,
,
,
,
,
由(1)可知AB⊥平面ADC,則平面ADC的法向量,
設(shè)平面ADE的法向量,
,
,
則,即
,令
,得
,
所以,所以
,
,由圖可知二面角
為銳二面角,
所以二面角的余弦值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形中,
//
,
⊥
,
⊥
, 點
是
邊的中點, 將△
沿
折起,使平面
⊥平面
,連接
,
,
, 得到如
圖所示的空間幾何體.
(Ⅰ)求證: ⊥平面
;
(Ⅱ)若,求點
到平面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐的底面為平行四邊形,且
,
,
分別為
中點,過
作平面
分別與線段
相交于點
.
(Ⅰ)在圖中作出平面使面
‖
(不要求證明);
(II)若,在(Ⅰ)的條件下求多面體
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究小組在電腦上進行人工降雨模擬實驗,準(zhǔn)備用A、B、C三種人工降雨方式分別對甲、乙、丙三地實施人工降雨,其實驗統(tǒng)計結(jié)果如下
方式 | 實施地點 | 大雨 | 中雨 | 小雨 | 模擬實驗次數(shù) |
A | 甲 | 2次 | 6次 | 4次 | 12次 |
B | 乙 | 3次 | 6次 | 3次 | 12次 |
C | 丙 | 2次 | 2次 | 8次 | 12次 |
假定對甲、乙、丙三地實施的人工降雨彼此互不影響,且不考慮洪澇災(zāi)害,請根據(jù)統(tǒng)計數(shù)據(jù):
(1)求甲、乙、丙三地都恰為中雨的概率;
(2)考慮不同地區(qū)的干旱程度,當(dāng)雨量達(dá)到理想狀態(tài)時,能緩解旱情,若甲、丙地需中雨或大雨即達(dá)到理想狀態(tài),乙地必須是大雨才達(dá)到理想狀態(tài),記“甲、乙、丙三地中緩解旱情的個數(shù)”為隨機變量,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題:
,命題
.
(1)若命題為真命題,求實數(shù)
的取值范圍;
(2)若命題為真命題,求實數(shù)
的取值范圍;
(3)若命題“”為真命題,且命題“
”為假命題,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知⊙:
與⊙
:
,以
,
分別為左右焦點的橢圓
:
經(jīng)過兩圓的交點.
(Ⅰ)求橢圓的方程;
(Ⅱ),
分別為橢圓
的左右頂點,
,
,
是橢圓
上非頂點的三點,若
∥
,
∥
,試問
的面積是否為定值?若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》中有這樣一則問題:“今有良馬與弩馬發(fā)長安,至齊,齊去長安三千里,良馬初日行一百九十三里,日增一十三里;弩馬初日行九十七里,日減半里,良馬先至齊,復(fù)還迎弩馬.”則現(xiàn)有如下說法:
①弩馬第九日走了九十三里路;
②良馬前五日共走了一千零九十五里路;
③良馬和弩馬相遇時,良馬走了二十一日.
則以上說法錯誤的個數(shù)是( )個
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=1+ .
(1)求f(x)的定義域;
(2)判斷f(x)的奇偶性,并證明;
(3)求f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1, ,其中n∈N*.
(1)設(shè),求證:數(shù)列{bn}是等差數(shù)列,并求出{an}的通項公式.
(2)設(shè),數(shù)列{cncn+2}的前n項和為Tn,是否存在正整數(shù)m,使得
對于n∈N*,恒成立?若存在,求出m的最小值;若不存在,請說明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com