【題目】已知橢圓C:(
)的左、右焦點(diǎn)分別為
,
.橢圓C的長軸與焦距之比為
,過
的直線l與C交于A、B兩點(diǎn).
(1)求橢圓的方程;
(2)當(dāng)l的斜率為1時(shí),求的面積;
(3)當(dāng)線段的垂直平分線在y軸上的截距最小時(shí),求直線l的方程.
【答案】(1)(2)12(3)
.
【解析】
(1)根據(jù)已知條件求得,由此求得橢圓方程.
(2)求得直線的方程,聯(lián)立直線
的方程和橢圓方程,求得
兩點(diǎn)的縱坐標(biāo),由此求得三角形
的面積.
(3)設(shè)出直線的方程,聯(lián)立直線
的方程和拋物線方程,化簡后寫出韋達(dá)定理,求得線段
中點(diǎn)
的坐標(biāo),設(shè)線段
的垂直平分線與y軸的交點(diǎn)為
,根據(jù)
求得
關(guān)于
的表達(dá)式,由此求得
的最小值,以及此時(shí)
的值,進(jìn)而求得直線
的方程.
(1)依題意,因,又
,得
,
所以橢圓C的方程為.
(2)設(shè)、
,當(dāng)
時(shí),直線l:
,將直線與橢圓方程聯(lián)立
,消去x得,
,解得
,
,
,
所以.
(3)設(shè)直線l的斜率為k,由題意可知,由
,消去y得
,
恒成立,
,
設(shè)線段的中點(diǎn)為
,則
,
,
設(shè)線段的垂直平分線與y軸的交點(diǎn)為
,則
,得
.
,整理得:
,
,等號(hào)成立時(shí)
.故當(dāng)截距m最小為
時(shí),
,此時(shí)直線l的方程為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)采用隨機(jī)模擬的方法估計(jì)某運(yùn)動(dòng)員射擊4次,至少擊中3次的概率:先由計(jì)算器給出0到9之間取整數(shù)值的隨機(jī)數(shù),指定0、1表示沒有擊中目標(biāo),2、3、4、5、6、7、8、9表示擊中目標(biāo),以4個(gè)隨機(jī)數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了20組隨機(jī)數(shù):
根據(jù)以上數(shù)據(jù)估計(jì)該射擊運(yùn)動(dòng)員射擊4次至少擊中3次的概率為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為測(cè)試特斯拉汽車的百米加速時(shí)間,研發(fā)人員記錄了汽車在取
、
、
、
、
、
、
時(shí)刻的位移,并對(duì)數(shù)據(jù)做了初步處理,得到圖
.同時(shí),令
,得到數(shù)據(jù)圖
,現(xiàn)畫出
與
,
與
的散點(diǎn)圖.
累加 | 累加 |
(1)根據(jù)散點(diǎn)圖判斷,與
,
與
哪兩個(gè)量之間線性相關(guān)程度更強(qiáng)?(直接給出判斷即可);
(2)根據(jù)(1)的結(jié)果選擇線性相關(guān)程度更強(qiáng)的兩個(gè)量,建立相應(yīng)的回歸直線方程;
(3)根據(jù)(2)的結(jié)果預(yù)計(jì)特斯拉汽車百米加速需要的時(shí)間.
附:對(duì)于一組數(shù)據(jù)、
、
、
,其回歸直線
的斜率和截距的最小二乘估計(jì)分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知空間四邊形ABCD,∠BAC=,AB=AC=2
,BD=CD=6,且平面ABC⊥平面BCD,則空間四邊形ABCD的外接球的表面積為( )
A. 60π B. 36π C. 24π D. 12π
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為常數(shù)
.
(Ⅰ)若是函數(shù)
的一個(gè)極值點(diǎn),求此時(shí)函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若對(duì)任意的,
,不等式
恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查一款電視機(jī)的使用時(shí)間,研究人員對(duì)該款電視機(jī)進(jìn)行了相應(yīng)的測(cè)試,將得到的數(shù)據(jù)統(tǒng)計(jì)如下圖所示:
并對(duì)不同年齡層的市民對(duì)這款電視機(jī)的購買意愿作出調(diào)查,得到的數(shù)據(jù)如下表所示:
(1)根據(jù)圖中的數(shù)據(jù),試估計(jì)該款電視機(jī)的平均使用時(shí)間;
(2)根據(jù)表中數(shù)據(jù),判斷是否有99.9%的把握認(rèn)為“愿意購買該款電視機(jī)”與“市民的年齡”有關(guān);
(3)若按照電視機(jī)的使用時(shí)間進(jìn)行分層抽樣,從使用時(shí)間在[0,4)和[4,20]的電視機(jī)中抽取5臺(tái),再從這5臺(tái)中隨機(jī)抽取2臺(tái)進(jìn)行配件檢測(cè),求被抽取的2臺(tái)電視機(jī)的使用時(shí)間都在[4,20]內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有12支球隊(duì)進(jìn)行足球比賽,每兩隊(duì)都賽一場(chǎng),勝者得3分,負(fù)者得0分,平局各得1分那么,有1支球隊(duì)最少要得多少分才能保證最多有6支球隊(duì)的得分不少于該隊(duì)的得分?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標(biāo)原點(diǎn),橢圓
的焦距為
,直線
截圓
與橢圓
所得的弦長之比為
,圓
、橢圓
與
軸正半軸的交點(diǎn)分別為
,
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)(
且
)為橢圓
上一點(diǎn),點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
,直線
,
分別交
軸于點(diǎn)
,
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】祖暅原理也就是“等積原理”,它是由我國南北朝杰出的數(shù)學(xué)家祖沖之的兒子祖暅?zhǔn)紫忍岢鰜淼?/span>.祖暅原理的內(nèi)容是:“冪勢(shì)既同,則積不容異”,“勢(shì)”即是高,“冪”是面積.意思是,如果夾在兩平行平面間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的平面所截,如果兩個(gè)截面的面積總相等,那么這兩個(gè)幾何體的體積相等.已知,兩個(gè)平行平面間有三個(gè)幾何體,分別是三棱錐、四棱錐、圓錐(高度都是h),其中:三棱錐的體積為V,四棱錐的底面是邊長為a的正方形,圓錐的底面半徑為r,現(xiàn)用平行于這兩個(gè)平面的平面去截三個(gè)幾何體,如果得到的三個(gè)截面面積總相等,那么,下面關(guān)系式正確的是( )
A.,
,
B.
,
,
C.,
,
D.
,
,
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com