【題目】已知空間四邊形ABCD,∠BAC=,AB=AC=2
,BD=CD=6,且平面ABC⊥平面BCD,則空間四邊形ABCD的外接球的表面積為( )
A. 60π B. 36π C. 24π D. 12π
科目:高中數學 來源: 題型:
【題目】某權威機構發布了2014年度“城市居民幸福排行榜”,某市成為本年度城市最“幸福城”.隨后,該市某校學生會組織部分同學,用“10分制”隨機調查“陽光”社區人們的幸福度.現從調查人群中隨機抽取16名,如圖所示的莖葉圖記錄了他們的幸福度分數(以小數點前的一位數字為莖,小數點后的一位數字為葉):
(1)指出這組數據的眾數和中位數;
(2)若幸福度不低于9.5分,則稱該人的幸福度為“極幸!保髲倪@16人中隨機選取3人,至多有1人是“極幸福”的概率;
(3)以這16人的樣本數據來估計整個社區的總體數據,若從該社區(人數很多)任選3人,記表示抽到“極幸!钡娜藬担
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設無窮項等差數列的公差為
,前n項和為
,則下列四個說法中正確的個數是( )
①若,則數列
有最大項;②若數列
有最大項,則
;
③若數列是遞增數列,則對任意的
,均有
;
④若對任意的,均有
,則數列
是遞增數列.
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】費馬點是指三角形內到三角形三個頂點距離之和最小的點。當三角形三個內角均小于時,費馬點與三個頂點連線正好三等分費馬點所在的周角,即該點所對的三角形三邊的張角相等均為
。根據以上性質,函數
的最小值為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場經營的某種包裝的大米質量ξ(單位:kg)服從正態分布N(10,σ2),根據檢測結果可知P(9.9≤ζ≤10.1)=0.96,某公司為每位職工購買一袋這種包裝的大米作為福利,若該公司有1000名職工,則分發到的大米質量在9.9kg以下的職工數大約為
A. 10 B. 20 C. 30 D. 40
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國南北朝時期的數學家祖暅提出體積的計算原理(祖暅原理):“冪勢既同,則積不容異”,“勢”即是高,“冪”是面積.意思是:如果兩等高的幾何體在同高處所截得兩幾何體的截面積恒等,那么這兩個幾何體的體積相等.已知焦點在x軸上的雙曲線C的離心率e=,焦點到其漸近線的距離為2.直線y=0與y=2在第一象限內與雙曲線C及其漸近線圍成如圖所示的圖形OABN,則它繞y軸旋轉一圈所得幾何體的體積為___________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知四棱錐的底面ABCD是菱形,
平面ABCD,
,
,F,G分別為PD,BC中點,
.
(Ⅰ)求證:平面PAB;
(Ⅱ)求三棱錐的體積;
(Ⅲ)求證:OP與AB不垂直.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】A地的天氣預報顯示,A地在今后的三天中,每一天有強濃霧的概率為,現用隨機模擬的方法估計這三天中至少有兩天有強濃霧的概率,先利用計算器產生
之間整數值的隨機數,并用0,1,2,3,4,5,6表示沒有強濃霧,用7,8,9表示有強濃霧,再以每3個隨機數作為一組,代表三天的天氣情況,產生了如下20組隨機數:
402 978 191 925 273 842 812 479 569 683
231 357 394 027 506 588 730 113 537 779
則這三天中至少有兩天有強濃霧的概率近似為
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sinωx﹣cosωx(ω>0),,若方程f(x)=﹣1在(0,π)上有且只有四個實數根,則實數ω的取值范圍為 ( )
A. (,
] B. (
,
] C. (
,
] D. (
,
]
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com