(本小題滿分12分)
已知橢圓的離心率為
,定點
,橢圓短軸的端點是
,
,且
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)過點且斜率不為
的直線交橢圓
于
,
兩點.試問
軸上是否存在定點
,使
平分
?若存在,求出點
的坐標;若不存在,說明理由.
(1) (2)
解析試題分析:(Ⅰ)解:由 , 得
.
依題意△是等腰直角三角形,從而
,故
.
所以橢圓的方程是
.
(Ⅱ)解:設(shè),
,直線
的方程為
.
將直線的方程與橢圓
的方程聯(lián)立,
消去得
.
所以 ,
.
若平分
,則直線
,
的傾斜角互補,
所以.
設(shè),則有
.
將 ,
代入上式,
整理得 ,
所以 .
將 ,
代入上式,
整理得 .
由于上式對任意實數(shù)都成立,所以
.
綜上,存在定點,使
平分
.
考點:橢圓與直線的位置關(guān)系
點評:解決的關(guān)鍵是對于直線與橢圓的位置關(guān)系的聯(lián)立方程組,設(shè)而不求的代數(shù)思想來解決解析幾何的本質(zhì),屬于基礎(chǔ)題。
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為
,且過點
.
(1)求橢圓的標準方程;
(2)四邊形ABCD的頂點在橢圓上,且對角線A C、BD過原點O,若,
(i) 求的最值.
(ii) 求證:四邊形ABCD的面積為定值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題13分)已知橢圓,橢圓
以
的長軸為短軸,且與
有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標原點,點A,B分別在橢圓和
上,
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分14分)
已知橢圓的中心在坐標原點,兩個焦點分別為
,
,點
在橢圓
上,過點
的直線
與拋物線
交于
兩點,拋物線
在點
處的切線分別為
,且
與
交于點
.
(1) 求橢圓的方程;
(2) 是否存在滿足的點
? 若存在,指出這樣的點
有幾個(不必求出點
的坐標); 若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
已知橢圓的離心率為
,右焦點為(
,0),斜率為1的直線
與橢圓G交與A、B兩點,以AB為底邊作等腰三角形,頂點為
.
(1)求橢圓G的方程;
(2)求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓(a>b>0)的離心率e=
,連接橢圓的四個頂點得到的菱形的面積為4.(Ⅰ)求橢圓的方程;(Ⅱ)設(shè)直線l與橢圓相交于不同的兩點A、B,已知點A的坐標為(-
,0).若
,求直線l的傾斜角;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知橢圓C:(
.
(1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程;
(2)在(1)的條件下,設(shè)過定點的直線
與橢圓C交于不同的兩點
,且
為銳角(其中
為坐標原點),求直線
的斜率k的取值范圍;
(3)如圖,過原點任意作兩條互相垂直的直線與橢圓
(
)相交于
四點,設(shè)原點
到四邊形
一邊的距離為
,試求
時
滿足的條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知m>1,直線,橢圓C:
,
、
分別為橢圓C的左、右焦點.
(Ⅰ)當直線過右焦點時,求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點,△A、△B
的重心分別為G、H.若原點O在以線段GH為直徑的圓內(nèi),求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com