【題目】某公司舉辦捐步公益活動,參與者通過捐贈每天的運動步數獲得公司提供的牛奶,再將牛奶捐贈給留守兒童.此活動不但為公益事業作出了較大的貢獻,公司還獲得了相應的廣告效益.據測算,首日參與活動人數為人,以后每天人數比前一天都增加
,
天后捐步人數穩定在第
天的水平,假設此項活動的啟動資金為
萬元,每位捐步者每天可以使公司收益
元(以下人數精確到
人,收益精確到
元).
(1)求活動開始后第天的捐步人數,及前
天公司的捐步總收益;
(2)活動開始第幾天以后公司的捐步總收益可以收回啟動資金并有盈余?
科目:高中數學 來源: 題型:
【題目】如圖,在多面體中,底面
為菱形,
,
,
平面
,
,
.
(1)若點,
分別在
,
上,且
,
,證明
平面
.
(2)若平面平面
,求平面
把多面體
分成大、小兩部分的體積比.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
(
為參數),將曲線
上的所有點的橫坐標保持不變,縱坐標縮短為原來的
后得到曲線
;以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求曲線和直線
的直角坐標方程;
(2)已知,設直線
與曲線
交于不同的
、
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
、
.經過點
且傾斜角為
的直線
與橢圓
交于
、
兩點(其中點
在
軸上方),
的周長為8.
(1)求橢圓的標準方程;
(2)如圖,把平面沿
軸折起來,使
軸正半軸和
軸確定的半平面,與
負半軸和
軸所確定的半平面互相垂直.
①若,求異面直線
和
所成角的大;
②若折疊后的周長為
,求
的大。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為正方形,
底面
,
,
為線段
的中點,
為線段
上的動點.
(1)平面與平面
是否互相垂直?如果垂直,請證明;如果不垂直,請說明理由.
(2)若,
為線段
的三等分點,求多面體
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知分別是雙曲線
的左、右焦點,過
斜率為
的直線
交雙曲線的左、右兩支分別于
兩點,過
且與
垂直的直線
交雙曲線的左、右兩支分別于
兩點.
(1)求的取值范圍;
(2)求四邊形面積的最小值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數滿足:對于任意正數
,都有
,且
,則稱函數
為“L函數”.
(1)試判斷函數與
是否是“L函數”;
(2)若函數為“L函數”,求實數a的取值范圍;
(3)若函數為“L函數”,且
,求證:對任意
,都有
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,平面PCD,
,
,
,E為AD的中點,AC與BE相交于點O.
(1)證明:平面ABCD.
(2)求直線BC與平面PBD所成角的正弦值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com