日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設x1,x2是函數f(x)=
a
3
x3+
b
2
x2-a2x(a>0)
的兩個極值點,且|x1|+|x2|=2.
(1)證明:|b|≤
4
3
9

(2)若g(x)=f'(x)-2a(x-x1),證明當x1<x<2時,且x1<0時,|g(x)|≤4a.
分析:(1)先求出導函數,據導數在極值點處的值為0,得到x1,x2是方程f'(x)=ax2+bx-a2=0的兩個根.再利用二次方程的韋達定理求出x1,x2與a的關系,且判斷出它們異號,將韋達定理代入|x1|+|x2|=2,求出b的范圍.
(2)先求出g(x),利用x1,x2異號,判斷出x2>0,從而將絕對值符號去掉,利用基本不等式得到不等式|g(x)|≤4a
解答:解:(1)f'(x)=ax2+bx-a2
由x1,x2是函數f(x)=
a
3
x3+
b
2
x2-a2x(a>0)
的兩個極值點,
知x1,x2是方程f'(x)=ax2+bx-a2=0的兩個根.
所以,
x1+x2=-
b
a
x1x2=-a

又因為a>0,所以,x1,x2異號,
所以,2=|x1|+|x2|=
(x1+x2)2-4x1x2
=
b2
a2
+4a

即b2=a2(4-4a),其中0<a≤1.
設u(a)=a2(4-4a),
則u'(a)=8a-12a2
所以,u(a)在(0,
2
3
]
上單調遞增,在[
2
3
,1)
單調遞減.
所以,當0<a≤1時,u(a)≤u(
2
3
)=
16
27

b2
16
27
,所以,|b|≤
4
3
9

(2)g(x)=f'(x)-2a(x-x1)=a(x-x1)(x-x2)-2a(x-x1)=a(x-x1)(x-x2-2),
因為x1x2=-a<0,且x1<0,所以,x2>0,
所以,當x1<x<2時,
|g(x)|=a(x-x1)(x2+2-x)≤a[
(x-x1)+(x2+2-x)
2
]2=4a
點評:解決函數的極值問題,常利用性質:導數在極值點處的導數值為0;利用基本不等式求函數的最值,要注意使用的條件:一正、二定、三相等.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設x1,x2是函數f(x)=
a
3
x3+
b
2
x2-a2x(a>0)的兩個極值點,且|x1|+|x2|=2.
(1)求a的取值范圍;
(2)求證:|b|≤
4
3
9

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=x2+bx+c,且f(1)=-
12

(1)求證:函數f(x)有兩個零點.
(2)設x1、x2是函數f(x)的兩個零點,求|x1-x2|的取值范圍.
(3)求證:函數f(x)在區間(0,2)內至少有一個零點.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=ax2+bx+c,且f(1)=-
a
2
,3a>2c>2b

(1)求證:a>0且-3<
b
a
<-
3
4
;
(2)求證:函數f(x)在區間(0,2)內至少有一個零點;
(3)設x1,x2是函數f(x)的兩個零點,求|x1-x2|的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設x1,x2是函數f(x)=x3-2ax2+a2x的兩個極值點,若x1<2<x2,則實數a的取值范圍是
 

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久22 | 成人福利在线观看 | 欧美综合一区 | 欧美国产日韩一区 | 91精品国产综合久久久久久丝袜 | 日韩精品久久久久久 | 姐姐在线观看动漫第二集免费 | 欧美一二 | 国产又粗又猛视频免费 | 亚洲毛片网站 | 在线视频97 | 国产精品一区二区三区在线播放 | 久久网站热最新地址 | 欧美日韩1区 | 黄色大片免费网站 | 久久这里只有精品首页 | 91视频播放 | 日韩欧美在线观看视频 | jizz欧美大片| 欧美一区二区三区在线看 | 精品无码久久久久久国产 | 毛片天堂 | 久久情趣视频 | 亚洲一区在线日韩在线深爱 | 黄色网址视频 | 久久视频国产 | 日本三级在线视频 | 久久精品国产亚洲a∨蜜臀 性视频网站免费 | 久久精品午夜 | 天天操夜夜操 | 91精品久久久久久综合五月天 | 国产小视频在线观看 | 亚洲成av | 久久精品成人免费视频 | 国产精品一级在线观看 | 999在线观看精品免费不卡网站 | av中文在线 | 黄色一级毛片 | 国产一区不卡 | 久久国产精品久久 | 日韩最新av |