A. | 15 | B. | 31 | C. | 40 | D. | 63 |
分析 設等比數列{an}的公比為q≠1,根據a1+a3=5,S4=15,可得${a}_{1}(1+{q}^{2})$=5,$\frac{{a}_{1}({q}^{4}-1)}{q-1}$=15,解出進而得出.
解答 解:設等比數列{an}的公比為q≠1,∵a1+a3=5,S4=15,
∴${a}_{1}(1+{q}^{2})$=5,$\frac{{a}_{1}({q}^{4}-1)}{q-1}$=15,
解得a1=1,q=2.
則S6=$\frac{{2}^{6}-1}{2-1}$=63.
故選:D.
點評 本題考查了等比數列的通項公式與前n項和,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 最小正周期為2π的偶函數 | B. | 最小正周期為2π的奇函數 | ||
C. | 最小正周期為π的偶函數 | D. | 最小正周期為π的奇函數 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com