【題目】為了解電視對生活的影響,一個社會調查機構就平均每天看電視的時間調查了某地10000位居民,并根據所得數據畫出樣本的頻率分布直方圖(如圖),為了分析該地居民平均每天看電視的時間與年齡、學歷、職業等方面的關系,要從這10000位居民中再用分層抽樣抽出100位居民做進一步調查,則在(小時)時間段內應抽出的人數是( )
A.25B.30C.50D.75
科目:高中數學 來源: 題型:
【題目】某小組為了研究晝夜溫差對一種稻谷種子發芽情況的影響,他們分別記錄了4月1日至4月5日的每天星夜溫差與實驗室每天每100顆種子的發芽數,得到如下資料:
日期 | 4月1日 | 4月2日 | 4月3日 | 4月4日 | 4月5日 |
溫差 | 9 | 10 | 11 | 8 | 12 |
發芽數 | 38 | 30 | 24 | 41 | 17 |
利用散點圖,可知線性相關。
(1)求出關于
的線性回歸方程,若4月6日星夜溫差
,請根據你求得的線性同歸方程預測4月6日這一天實驗室每100顆種子中發芽顆數;
(2)若從4月1日 4月5日的五組實驗數據中選取2組數據,求這兩組恰好是不相鄰兩天數據的概率.
(公式:)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.
(1)求A∪B,(CUA)∩B;
(2)若A∩C≠,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數:f(x)=x2﹣mx﹣n(m, n∈R).
(1)若m+n=0,解關于x的不等式f(x)≥x(結果用含m式子表示);
(2)若存在實數m,使得當x∈[1,2]時,不等式x≤f(x)≤4x恒成立,求實數n的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設點的坐標分別為
,直線
相交于點
,且它們的斜率之積是
.
(1)求點的軌跡
的方程;
(2)直線與曲線
相交于
兩點,若
是否存在實數
,使得
的面積為
?若存在,請求出
的值;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為增強市民節能環保意識,某市面向全市征召義務宣傳志愿者,現從符合條件的500名志愿者中隨機抽取100名志愿者,他們的年齡情況如下表所示:
分組(單位:歲) | 頻數 | 頻率 |
5 | 0.05 | |
① | 0.20 | |
35 | ② | |
30 | 0.30 | |
10 | 0.10 | |
總計 | 100 | 1.00 |
(1)頻率分布表中的①②位置應填什么數據?
(2)補全如圖所示的頻率分布直方圖,再根據頻率分布直方圖估計這500名志愿者中年齡在歲的人數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在全國第五個“扶貧日”到來之前,某省開展“精準扶貧,攜手同行”的主題活動,某貧困縣調查基層干部走訪貧困戶數量.鎮有基層干部60人,
鎮有基層干部60人,
鎮有基層干部80人,每人都走訪了若干貧困戶,按照分層抽樣,從
三鎮共選40名基層干部,統計他們走訪貧困戶的數量,并將走訪數量分成5組,
,繪制成如圖所示的頻率分布直方圖.
(1)求這40人中有多少人來自鎮,并估計
三鎮的基層干部平均每人走訪多少貧困戶;(同一組中的數據用該組區間的中點值作代表)
(2)如果把走訪貧困戶達到或超過25戶視為工作出色,以頻率估計概率,從三鎮的所有基層干部中隨機選取3人,記這3人中工作出色的人數為
,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率是
,過點
作斜率為
的直線
交橢圓
于
兩點,當直線垂直于
軸時,
.
(1)求橢圓的方程
(2)當變化時,在
軸上是否存在點
,使得
是以
為底的等腰三角形?若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com