日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=,點E是PD的中點.
(I)證明PA⊥平面ABCD,PB∥平面EAC;
(II)求以AC為棱,EAC與DAC為面的二面角θ的正切值.

【答案】分析:(Ⅰ)根據底面ABCD是菱形判斷出∠ABC=60°,且四邊長相等,在△PAB中,由PA2+AB2=2a2=PB2可推斷出PA⊥AB.同樣可推斷出,PA⊥AD,進而根據直線與面垂直的定義判斷出PA⊥平面ABCD.進而根據=判斷出共面.,進而根據直線與面平行的判定法則,推斷出PB∥平面EAC.
(Ⅱ)作EG∥PA交AD于G,由PA⊥平面ABCD.GH⊥AC于H,連接EH,進而可推斷出EG⊥平面ABCD.EH⊥AC,進而可知∠EHG即為二面角θ的平面角.進而根據E是PD的中點,從而G是AD的中點,分別求得EG和GH,進而根據求得答案.
解答:(Ⅰ)證明:因為底面ABCD是菱形,∠ABC=60°,
所以AB=AD=AC=a,
在△PAB中,由PA2+AB2=2a2=PB2知PA⊥AB.
同理,PA⊥AD,所以PA⊥平面ABCD.
因為=
所以共面.
又PB?平面EAC,所以PB∥平面EAC.

(Ⅱ)解:作EG∥PA交AD于G,由PA⊥平面ABCD.
知EG⊥平面ABCD.
作GH⊥AC于H,連接EH,則EH⊥AC,∠EHG即為二面角θ的平面角.
又E是PD的中點,從而G是AD的中點,
所以

點評:本題主要考查了直線與平面垂直的判定和二面角的問題.考查了學生綜合分析問題和解決問題的能力.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

精英家教網如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a
,點E在PD上,且PE:ED=2:1.
(Ⅰ)證明PA⊥平面ABCD;
(Ⅱ)求以AC為棱,EAC與DAC為面的二面角θ的大小;
(Ⅲ)在棱PC上是否存在一點F,使BF∥平面AEC?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a,點E在PD上,且PE:ED=2:1.
(Ⅰ)求二面角E-AC-D的大小:
(Ⅱ)在棱PC上是否存在一點F,使BF∥平面AEC?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在底面是菱形的四棱錐S-ABCD中,∠ABC=60°,SA=AB=a,SB=SD=
2
SA,點P在SD上,且SD=3PD.
(1)證明SA⊥平面ABCD;
(2)設E是SC的中點,求證BE∥平面APC.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在底面是菱形的四棱錐 P-ABCD中,∠ABC=60°,PA⊥平面ABCD,點E、F、G分別為CD、PD、PB的中點.PA=AD=2.
(1)證明:PC∥平面FAE;
(2)求二面角F-AE-D的平面角的正切值.

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=2,PB=PD=2
2
,點F是PC的中點.
(Ⅰ)求證:PC⊥BD;
(Ⅱ)求BF與平面ABCD所成角的大小;
(Ⅲ)若點E在棱PD上,當
PE
PD
為多少時二面角E-AC-D的大小為
π
6

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产一级视频 | 在线污污 | 波多野结衣一区二 | 亚洲日韩欧美一区二区在线 | 日韩av高清在线 | 国产精品久久久久久久免费大片 | 精品国产免费久久久久久尖叫 | 99久久久国产精品美女 | 香蕉黄色一级片 | 日韩中文字幕在线观看 | 免费一二二区视频 | 一区二区av| 成人免费av| 日韩av在线导航 | 999成人网| 成人午夜精品一区二区三区 | 91一区二区在线观看 | 久久久久久久久99精品 | 欧美国产视频一区 | 精品国产不卡一区二区三区 | 超碰日韩 | 久久久久国| 欧美精品第十页 | 久久精品国产一区二区电影 | 美日韩久久 | 激情婷婷| 国产91亚洲精品 | 91精品国产91久久久久久吃药 | 国产不卡免费 | 日韩美香港a一级毛片免费 欧美一极视频 | 国产区在线观看 | 国产日产久久欧美精品一区 | 日本一区二区三区在线播放 | 亚洲午夜视频 | 亚洲蜜臀av乱码久久精品蜜桃 | 久久精品91 | 免费一级欧美在线观看视频 | 国产成人精品在线 | 日韩成人av网站 | 久久国产精品偷 | 丁香在线|