【答案】
分析:(1)(配方法)∵y=3x
2-x+2=3(x-

)
2+

(2)看作是復合函數先設μ=-x
2-6x-5(μ≥0),則原函數可化為y=

,再配方法求得μ的范圍,可得

的范圍.
(3)可用分離變量法:將函數變形,y=

=

=3+

,再利用反比例函數求解.
(4)用換元法設t=

≥0,則x=1-t
2,原函數可化為y=1-t
2+4t,再用配方法求解
(5)由1-x
2≥0⇒-1≤x≤1,可用三角換元法:設x=cosα,α∈[0,π],將函數轉化為y=cosα+sinα=

sin(α+

)用三角函數求解
(6)由x
2+x+1>0恒成立,
即函數的定義域為R,用判別式法,將函數轉化為二次方程(y-2)x
2+(y+1)x+y-2=0有根求解.
解答:解:(1)(配方法)∵y=3x
2-x+2=3(x-

)
2+

≥

,
∴y=3x
2-x+2的值域為[

,+∞)
(2)求復合函數的值域:
設μ=-x
2-6x-5(μ≥0),則原函數可化為y=

又∵μ=-x
2-6x-5=-(x+3)
2+4≤4,
∴0≤μ≤4,故

∈[0,2],
∴y=

的值域為[0,2]
(3)分離變量法:y=

=

=3+

,
∵

≠0,∴3+

≠3,
∴函數y=

的值域為{y∈R|y≠3}
(4)換元法(代數換元法):設t=

≥0,則x=1-t
2,
∴原函數可化為y=1-t
2+4t=-(t-2)
2+5(t≥0),∴y≤5,
∴原函數值域為(-∞,5]
注:總結y=ax+b+

型值域,
變形:y=ax
2+b+

或y=ax
2+b+

(5)三角換元法:
∵1-x
2≥0⇒-1≤x≤1,
∴設x=cosα,α∈[0,π],
則y=cosα+sinα=

sin(α+

)
∵α∈[0,π],
∴α+

∈[

,

],
∴sin(α+

)∈[-

,1],
∴

sin(α+

)∈[-1,

],
∴原函數的值域為[-1,

]
(6)判別式法:∵x
2+x+1>0恒成立,
∴函數的定義域為R
由y=

得:(y-2)x
2+(y+1)x+y-2=0①
①當y-2=0即y=2時,①即3x+0=0,
∴x=0∈R
②當y-2≠0即y≠2時,
∵x∈R時方程(y-2)x
2+(y+1)x+y-2=0恒有實根,
∴△=(y+1)
2-4×(y-2)
2≥0,
∴1≤y≤5且y≠2,
∴原函數的值域為[1,5]
點評:本題主要考查求函數值域的一些常用的方法.配方法,分離變量法,三角換元法,代數換元法,判別式法…