如圖,已知在四棱錐中,底面
是矩形,
平面
,
、
分別是
、
的中點(diǎn).
(Ⅰ)求證:平面
;
(Ⅱ)若與平面
所成角為
,且
,求點(diǎn)
到平面
的距離.
(1)見試題解析;(2).
【解析】
試題分析:(I)要證明平面
,關(guān)鍵是在平面
內(nèi)找到一條與直線
平行的直線,本題就想是否有一個(gè)過直線
的平面與平面
相交,交線就是我們要找的平行直線(可根據(jù)線面平行的性質(zhì)定理知),在圖形中可容易看出應(yīng)該就是平面
,只不過再想一下,交線到底是什么而已,當(dāng)然具體輔助線的作法也可換成另一種說法(即試題解析中的直接取
中點(diǎn)
,然后連接
的方法);(2)由于
平面
,所以三棱錐
的體積可以很快求出,從而本題可用體積法求點(diǎn)
到平面
的距離,另外由于
,如果取
中點(diǎn)
,則有
,從而可得
平面
,也即平面
平面
,這時(shí)點(diǎn)
到平面
的垂線段可很快作出,從而迅速求出結(jié)論.
試題解析:(I)證明:如圖,取的中點(diǎn)
,連接
.
由已知得且
,
又是
的中點(diǎn),則
且
,
是平行四邊形, ∴
又平面
,
平面
平面
(II)設(shè)平面
的距離為
,
【法一】:因平面
,故
為
與平面
所成角,所以
,
所以,
,又因
,
是
的中點(diǎn)所以
,
,
.
作于
,因
,則
,
則,
因所以
【法二】因平面
,故
為
與平面
所成角,所以
,
所以,
,又因
,
是
的中點(diǎn)所以
,
,
.
作于
,連結(jié)
,因
,則
為
的中點(diǎn),故
所以平面
,所以平面
平面
,作
于
,則
平面
,所以線段
的長(zhǎng)為
平面
的距離.
又,
所以.
考點(diǎn):(1)線面平行的判定;(2)點(diǎn)到平面的距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年貴州省六高三第一次考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)如圖,已知在四棱錐
中,底面
是矩形,
平面
,
,
,
是
的中點(diǎn),
是線段
上的點(diǎn).
(I)當(dāng)是
的中點(diǎn)時(shí),求證:
平面
;
(II)要使二面角的大小為
,試確定
點(diǎn)的位置.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com