(2013•浙江)如圖,在四棱錐P﹣ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=,PA=
,∠ABC=120°,G為線段PC上的點.
(Ⅰ)證明:BD⊥平面PAC;
(Ⅱ)若G是PC的中點,求DG與PAC所成的角的正切值;
(Ⅲ)若G滿足PC⊥面BGD,求的值.
科目:高中數學 來源: 題型:解答題
如圖,和
所在平面互相垂直,且
,
,E、F、G分別為AC、DC、AD的中點.
(1)求證:平面BCG;
(2)求三棱錐D-BCG的體積.
附:椎體的體積公式,其中S為底面面積,h為高.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(2014·海淀模擬)如圖,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=AA1,且E是BC中點.
(1)求證:A1B∥平面AEC1.
(2)求證:B1C⊥平面AEC1.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD是平行四邊形,且AC⊥CD,PA=AD,M,Q分別是PD,BC的中點.
(1)求證:MQ∥平面PAB;
(2)若AN⊥PC,垂足為N,求證:MN⊥PD.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,四棱柱ABCD—A1B1C1D1中,側棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E為棱AA1的中點.
(1)證明B1C1⊥CE;
(2)求二面角B1CEC1的正弦值;
(3)設點M在線段C1E上,且直線AM與平面ADD1A1所成角的正弦值為,求線段AM的長.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在四棱錐P-ABCD中,O為AC與BD的交點,AB^平面PAD,△PAD是正三角形,
DC//AB,DA=DC=2AB.
(1)若點E為棱PA上一點,且OE∥平面PBC,求的值;
(2)求證:平面PBC^平面PDC.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com