【題目】已知點是圓
:
上的一動點,點
,點
在線段
上,且滿足
.
(1)求點的軌跡
的方程;
(2)設曲線與
軸的正半軸,
軸的正半軸的交點分別為點
,
,斜率為
的動直線
交曲線
于
、
兩點,其中點
在第一象限,求四邊形
面積的最大值.
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,且過點
.
(1)求橢圓C的標準方程;
(2)點P是橢圓上異于短軸端點A,B的任意一點,過點P作軸于Q,線段PQ的中點為M.直線AM與直線
交于點N,D為線段BN的中點,設O為坐標原點,試判斷以OD為直徑的圓與點M的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
是直角梯形,側棱
底面
,
垂直于
和
,
為棱
上的點,
,
.
(1)若為棱
的中點,求證:
//平面
;
(2)當時,求平面
與平面
所成的銳二面角的余弦值;
(3)在第(2)問條件下,設點是線段
上的動點,
與平面
所成的角為
,求當
取最大值時點
的位置.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
為自然對數的底數),其中
.
(1)在區間上,
是否存在最小值?若存在,求出最小值;若不存在,請說明理由.
(2)若函數的兩個極值點為
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的幾何體中,底面
為菱形,
,
,
與
相交于
點,四邊形
為直角梯形,
,
,
,平面
底面
.
(1)證明:平面平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究廣大市民對共享單車的使用情況,某公司在我市隨機抽取了100名用戶進行調查,得到如下數據:
每周使用次數 | 1次 | 2次 | 3次 | 4次 | 5次 | 6次及以上 |
男 | 4 | 3 | 3 | 7 | 8 | 30 |
女 | 6 | 5 | 4 | 4 | 6 | 20 |
合計 | 10 | 8 | 7 | 11 | 14 | 50 |
認為每周使用超過3次的用戶為“喜歡騎共享單車”.
(1)分別估算男、女“喜歡騎共享單車”的概率;
(2)請完成下面的2×2列聯表,并判斷能否有95%把握,認為是否“喜歡騎共享單車”與性別有關.
不喜歡騎共享單車 | 喜歡騎共享單車 | 合計 | |
男 | |||
女 | |||
合計 |
附表及公式:,其中
.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從拋物線上各點向x軸作垂線,垂線段中點的軌跡為E.
(1)求曲線E的方程;
(2)若直線與曲線E相交于A,B兩點,求證:
;
(3)若點F為曲線E的焦點,過點的直線與曲線E交于M,N兩點,直線
,
分別與曲線E交于C,D兩點,設直線
,
斜率分別為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(題文)如圖,長方形材料中,已知
,
.點
為材料
內部一點,
于
,
于
,且
,
. 現要在長方形材料
中裁剪出四邊形材料
,滿足
,點
、
分別在邊
,
上.
(1)設,試將四邊形材料
的面積表示為
的函數,并指明
的取值范圍;
(2)試確定點在
上的位置,使得四邊形材料
的面積
最小,并求出其最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,直線
與拋物線
交于
為拋物線
上一點.
(1)若,求
(2)已知點,過點
作直線
分別交曲線
于
,證明:在點
運動過程中,直線
始終過定點,并求出該定點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com