【題目】已知橢圓的中心在原點
,焦點在
軸上,左右焦點分別為
,
,離心率為
,右焦點到右頂點的距離為1.
(1)求橢圓的方程;
(2)過 的直線
與橢圓
交于不同的兩點
,
,則
的面積是否存在最大值?若存在,求出這個最大值及直線
的方程;若不存在,請說明理由.
科目:高中數學 來源: 題型:
【題目】袋中裝有6個球,紅藍兩色各半,從袋中不放回取球次,每次取1個球.
(1)求下列事件的概率:
①事件:
,取出的球同色;
②事件:
,第
次恰好將紅球全部取出;
(2)若第次恰好取到第一個紅球,求抽取次數
的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,圓
的參數方程為
(
是參數)以原點
為極點,
軸的非負半軸為極軸,建立極坐標系,直線
的極坐標方程為
.
(1)求圓的普通方程和的直線
直角坐標方程;
(2)設直線與
軸交點分別是
,點
是圓
上的動點,求
的面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),直線
的參數方程為
(
為常數且
,
為參數).
(1)求和
的直角坐標方程;
(2)若和
相交于
、
兩點,以線段
為一條邊作
的內接矩形
,當矩形
的面積取最大值時,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某手機軟件研發公司為改進產品,對軟件用戶每天在線的時間進行調查,隨機抽取40名男性與20名女性對其每天在線的時間進行了調查統計,并繪制了如圖所示的條形圖,其中每天的在線時間4h以上(包括4h)的用戶被稱為“資深用戶”.
(1)根據上述樣本數據,完成下面的2×2列聯表,并判定是否有95%的把握認為是否為“資深用戶”與性別有關;
“資深用戶” | 非“資深用戶” | 總計 | |
男性 | |||
女性 | |||
總計 |
(2)用樣本估計總體,若從全體用戶中隨機抽取3人,設這3人中“資深用戶”的人數為X,求隨機變量X的分布列與數學期望.
附:,其中n=a+b+c+d.
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com