【題目】已知為拋物線
的焦點,過點
的直線
與拋物線
相交于不同的兩點
,拋物線
在
兩點處的切線分別是
,且
相交于點
,則
的小值是___.
【答案】6
【解析】
設直線l的方程為:y=kx+1,A(),B(
).聯立化為:x2﹣4kx﹣4=0,利用根與系數的關系可得|AB|=
=k(
)+4.對x2=4y兩邊求導可得:y′
,可得切線PA的方程為:y﹣
(x﹣
),切線PB的方程為:y﹣
(x﹣
),聯立解得P點坐標,可得代入|PF|
,利用導數研究函數的單調性極值即可得出.
設直線l的方程為:y=kx+1,A(),B(
.
聯立,化為:x2﹣4kx﹣4=0,
可得:=4k,
=﹣4,
|AB|==k(
)+4=4k2+4.
對x2=4y兩邊求導可得:y′,
可得切線PA的方程為:y﹣(x﹣
)
切線PB的方程為:y﹣(x﹣
),
聯立解得:x(
)=2k,y
=﹣1.∴P(2k,﹣1).
∴|PF|.
∴|PF|,
令t≥2.
則|PF|t
f(t),
f′(t)=1,當t>4, f′(t)>0;
t<4, f′(t)<0
可得t=4時,函數f(t)取得極小值即最小值f(4)=6.當且僅當k時取等號.
故答案為:6.
科目:高中數學 來源: 題型:
【題目】為了檢驗設備M與設備N的生產效率,研究人員作出統計,得到如下表所示的結果,則
設備M | 設備N | |
生產出的合格產品 | 48 | 43 |
生產出的不合格產品 | 2 | 7 |
附:
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
參考公式:,其中
.
A. 有90%的把握認為生產的產品質量與設備的選擇有關
B. 沒有90%的把握認為生產的產品質量與設備的選擇有關
C. 可以在犯錯誤的概率不超過0.01的前提下認為生產的產品質量與設備的選擇有關
D. 不能在犯錯誤的概率不超過0.1的前提下認為生產的產品質量與設備的選擇有關
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是兩條異面直線,直線
與
都垂直,則下列說法正確的是( )
A. 若平面
,則
B. 若平面
,則
,
C. 存在平面,使得
,
,
D. 存在平面,使得
,
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】PM2.5是指空氣中直徑小于或等于2.5微米的顆粒物(也稱可入肺顆粒物),為了探究車流量與PM2.5的濃度是否相關,現采集到某城市周一至周五某一時間段車流量與PM2.5濃度的數據如下表:
時間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車流量x(萬輛) | 100 | 102 | 108 | 114 | 116 |
PM2.5的濃度y(微克/立方米) | 78 | 80 | 84 | 88 | 90 |
(1)根據上表數據,用最小二乘法,求出y關于x的線性回歸方程x
;
(2)若周六同一時間段車流量200萬輛,試根據(1)求出的線性回歸方程,預測此時PM2.5的濃度為多少?
(參考公式:,
;參考數據:
xi=540,
yi=420)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點A(-1,0),B(1,0),C(0,1),直線y=ax+b(a>0)將△ABC分割為面積相等的兩部分,則b的取值范圍是________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】六棱錐中,底面
是正六邊形,
底面
,給出下列四個命題:
①線段的長是點
到線段
的距離;
②異面直線與
所成角是
;
③線段的長是直線
與平面
的距離;
④是二面角
平面角.
其中所有真命題的序號是_______________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在邊長為3的菱形中,已知
,且
.將梯形
沿直線
折起,使
平面
,如圖2,
分別是
上的點.
(1)求證:圖2中,平面平面
;
(2)若平面平面
,求三棱錐
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,馬路南邊有一小池塘,池塘岸
長40米,池塘的最遠端
到
的距離為400米,且池塘的邊界為拋物線型,現要在池塘的周邊建一個等腰梯形的環池塘小路
,且
均與小池塘岸線相切,記
.
(1)求小路的總長,用表示;
(2)若在小路與小池塘之間(圖中陰影區域)鋪上草坪,求所需鋪草坪面積最小時,的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線的右頂點到其一條漸近線的距離等于
,拋物線
的焦點與雙曲線
的右焦點重合,則拋物線
上的動點
到直線
和
距離之和的最小值為( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com