日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
求和

 

答案:
解析:

,

分兩種情況討論。

(1)p>1,∵p>1>0,0<

=

=

==p

(2)p<1,∵0<q<p<1,

=

=

 


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(請注意求和符號:f(k)+f(k+1)+f(k+2)+…+f(n)=
n
i=k
f(i)
,其中k,n為正整數且k≤n)
已知常數a為正實數,曲線Cn:y=
nx
在其上一點Pn(xnyn)處的切線Ln
總經過定點(-a,0)(n∈N*
(1)求證:點列:P1,P2,…,Pn在同一直線上
(2)求證:ln(n+1)<
n
i=1
a
yi
<2
n
(n∈N*

查看答案和解析>>

科目:高中數學 來源: 題型:

14、已知集合M={x|1≤x≤4,x∈N},對它的非空子集A,可將A中每個元素k,都乘以(-1)k再求和(如A={1,2,4},可求得和為(-1)1•1+(-1)2•2+(-1)4•4=5),則對M的所有非空子集,這些和的總和是
16

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}(n為正整數)是首項是a1,公比為q的等比數列.
(1)求和:a1C20-a2C21+a3C22,a1C30-a2C31+a3C32-a4C33
(2)由(1)的結果歸納概括出關于正整數n的一個結論,并加以證明.
(3)設q≠1,Sn是等比數列{an}的前n項和,求:S1Cn0-S2Cn1+S3Cn2-S4Cn3+…+(-1)nSn+1Cnn

查看答案和解析>>

科目:高中數學 來源: 題型:

f(x)=
x
a(x+2)
,方程f(x)=x有唯一解,已知f(xn)=xn+1(n∈N*),且f(x1)=
1
1005

(1)求數列{xn}的通項公式;
(2)若an=
4-4017xn
xn
,且bn=
a
2
n+1
+
a
2
n
2an+1an
(n∈N*)
,求和Sn=b1+b2+…+bn
(3)問:是否存在最小整數m,使得對任意n∈N*,有f(xn)<
m
2010
成立,若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)對任意x∈R都有f(x)+f(1-x)=
1
2
成立.
(Ⅰ)求和f(
1
n
)
+f(
n-1
n
)
(n∈N*)的值;
(Ⅱ)數列{an}滿足條件;an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)
,試證:數列{an}是等差數列.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: avav片 | 超碰成人97 | 日韩免费看 | 91麻豆产精品久久久久久 | 区一区二免费视频 | 亚洲成人精品 | 中文字幕精品一区久久久久 | 日韩大片 | 午夜精品久久久久久久久久久久 | 欧美日韩精品一区二区在线播放 | 好硬好涨老师受不了了视频 | 国产区在线 | 先锋资源中文字幕 | 欧美日韩国产不卡 | 99久久婷婷国产综合精品电影 | 久久精品在线视频 | 中文字幕丝袜 | 性视频亚洲 | 久久亚洲精品中文字幕 | 亚洲欧美在线播放 | 一区二区中文字幕在线观看 | 精品三级在线 | 国产亚洲精品精品国产亚洲综合 | 十环传奇在线观看完整免费高清 | 欧美日韩一区二区三区在线观看 | 麻豆精品一区二区 | 一区二区三区国产 | 日本久久精品视频 | 国产精品久久久久一区二区三区 | 日韩国产在线播放 | 奇米av | av黄在线观看 | 亚洲九九 | 91手机精品视频 | 精品国产31久久久久久 | 亚洲视频在线一区二区三区 | 成人超碰在线 | 亚洲一区欧美 | 一本一道久久久a久久久精品91 | 国产精品第一国产精品 | 99亚洲精品 |