【題目】在三棱柱中,
,
,
為
的中點.
(1)證明:;
(2)若,點
在平面
的射影在
上,且
與平面
所成角的正弦值為
,求三棱柱
的高.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,已知底面ABCD是邊長為1的正方形,側面PAD⊥平面ABCD,PA=PD,PA與平面PBC所成角的正弦值為。
(1)求側棱PA的長;
(2)設E為AB中點,若PA≥AB,求二面角B-PC-E的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線x=﹣2上有一動點Q,過點Q作直線l,垂直于y軸,動點P在l1上,且滿足(O為坐標原點),記點P的軌跡為C.
(1)求曲線C的方程;
(2)已知定點M(,0),N(
,0),點A為曲線C上一點,直線AM交曲線C于另一點B,且點A在線段MB上,直線AN交曲線C于另一點D,求△MBD的內切圓半徑r的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某火鍋店為了解氣溫對營業額的影響,隨機記錄了該店1月份中5天的日營業額y(單位:千元)與該地當日最低氣溫x(單位:℃)的數據,如下表:
x | 2 | 5 | 8 | 9 | 11 |
y | 12 | 10 | 8 | 8 | 7 |
(1)求y關于x的回歸方程;
(2)判定y與x之間是正相關還是負相關;若該地1月份某天的最低氣溫為6℃,用所求回歸方程預測該店當日的營業額;
附:①;
.
②參考數據如下:
i | ||||
1 | 2 | 12 | 4 | 24 |
2 | 5 | 10 | 25 | 50 |
3 | 8 | 8 | 64 | 64 |
4 | 9 | 8 | 81 | 72 |
5 | 11 | 7 | 121 | 77 |
35 | 45 | 295 | 287 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,直線l的參數方程為(t為參數).以坐標原點為極點,以x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為
.
(1)求l的普通方程和C的直角坐標方程;
(2)若l與C相交于A,B兩點,且,求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,已知曲線
的極坐標方程為
,過點
的直線
的參數方程為
(
為參數),直線
與曲線
相交于
兩點.
(1)寫出曲線的直角坐標方程和直線
的普通方程;
(2)若,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓、拋物線
的焦點均在
軸上,
的中心和
的頂點均為原點
,從每條曲線上取兩個點,將其坐標記錄于下表中:
3 |
| 4 | ||
0 |
|
(Ⅰ)求的標準方程;
(Ⅱ)請問是否存在直線滿足條件:①過
的焦點
;②與
交不同兩點
且滿足
?若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列命題:
①線性相關系數越大,兩個變量的線性相關性越強;反之,線性相關性越弱;
②用來刻畫回歸效果,
越大,說明模型的擬合效果越好;
③根據列聯表中的數據計算得出的
的值越大,兩類變量相關的可能性就越大;
④在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好;
⑤從勻速傳遞的產品生產流水線上,質檢員每10分鐘從中抽取一件產品進行某項指標檢測,這樣的抽樣是分層抽樣.
其中真命題的序號是_______.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com