【題目】已知函數f(x)= 在點(1,f(1))處的切線與x軸平行.
(1)求實數a的值及f(x)的極值;
(2)若對任意x1 , x2∈[e2 , +∞),有| |>
,求實數k的取值范圍.
【答案】
(1)解:∵函數f(x)= ,
∴ ,
令f'(1)=0,
∴ =0,
解得a=1;
令f′(x)=0,則lnx=0,
解得x=1,
即f(x)有極大值為f(1)=1
(2)解:由| |>
,可得
,
令 ,則g(x)=x﹣xlnx,其中x∈(0,e﹣2],
g'(x)=﹣lnx,又x∈(0,e﹣2],則g'(x)=﹣lnx≥2,
即 ,
因此實數k的取值范圍是(﹣∞,2]
【解析】(1)求函數f(x)的導數,根據導數的幾何意義求出a的值,再利用f′(x)=0,求出函數f(x)的極值;(2)由| |>
變形得
,構造函數
,利用導數求出g(x)在定區間上的取值范圍即可.
【考點精析】解答此題的關鍵在于理解函數的極值與導數的相關知識,掌握求函數的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值.
科目:高中數學 來源: 題型:
【題目】某中學擬在高一下學期開設游泳選修課,為了了解高一學生喜歡游泳是否與性別有關,現從高一學生中抽取人做調查,得到如下
列聯表:
已知在這人中隨機抽取一人抽到喜歡游泳的學生的概率為
,
(Ⅰ)請將上述列聯表補充完整,并判斷是否有%的把握認為喜歡游泳與性別有關?并說明你的理由;
(Ⅱ)針對問卷調查的名學生,學校決定從喜歡游泳的人中按分層抽樣的方法隨機抽取
人成立游泳科普知識宣傳組,并在這
人中任選兩人作為宣傳組的組長,求這兩人中至少有一名女生的概率,參考公式:
,其中
.參考數據:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(1)若,求曲線
在點
處的切線;
(2)若函數在其定義域內為增函數,求正實數
的取值范圍;
(3)設函數,若在
上至少存在一點
,使得
成立,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市規定,高中學生三年在校期間參加不少于小時的社區服務才合格.教育部門在全市隨機抽取200位學生參加社區服務的數據,按時間段
,
,
,
,
(單位:小時)進行統計,其頻率分布直方圖如圖所示.
(Ⅰ)求抽取的200位學生中,參加社區服務時間不少于90小時的學生人數,并估計
從全市高中學生中任意選取一人,其參加社區服務時間不少于90小時的概率;
(Ⅱ)從全市高中學生(人數很多)中任意選取3位學生,記為3位學生中參加社區服務時間不少于90小時的人數.試求隨機變量
的分布列和數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2sinxcosx+2 cos2x﹣
.
(1)求函數f(x)的單調減區間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,已知a=1,b= ,f(A﹣
)=
,求角C.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】正方體AC1的棱長為1,過點A作平面A1BD的垂線,垂足為點H.有以下四個命題:
①點H是△A1BD的垂心;②AH垂直平面CB1D1;
③AH= ;④點H到平面A1B1C1D1的距離為
.
其中真命題的個數為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線y2=4x和點M(6,0),O為坐標原點,直線l過點M,且與拋物線交于A,B兩點.
(1)求 ;
(2)若△OAB的面積等于12 ,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】斜三棱柱ABC﹣A1B1C1中,AA1=AC=BC=2,∠A1AC=∠C1CB=60°,且平面ACC1A1⊥平面BCC1B1 , 則A1B的長度為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知三棱錐的底面是直角三角形,直角邊長分別為3和4,過直角頂點的側棱長為4,且垂直于底面,該三棱錐的正視圖是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com