【題目】已知數列{an}是公差不為0的等差數列,首項a1=1,且a1 , a2 , a4成等比數列. (Ⅰ)求數列{an}的通項公式;
(Ⅱ)設數列{bn}滿足bn=an+2 ,求數列{bn}的前n項和Tn .
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,圓的方程為
(
為參數).以坐標原點為極點,
軸的正半軸為極軸,建立極坐標系,兩種坐標系中取相同的單位長度,直線
的極坐標方程為
(1)當時,判斷直線
與圓
的關系;
(2)當上有且只有一點到直線
的距離等于
時,求
上到直線
距離為
的點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了分析本校高中生的性別與是否喜歡數學之間的關系,在高中生中隨機地抽取了90名學生調查,得到了如下列聯表:
喜歡數學 | 不喜歡數學 | 總計 | |
男 | 30 | ① | 45 |
女 | ② | 25 | 45 |
總計 | ③ | ④ | 90 |
(1)求①②③④處分別對應的值;
(2)能有多大把握認為“高中生的性別與喜歡數學”有關?
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數同時滿足:①對于定義域上的任意
,恒有
;②對于定義域上的任意
.當
,恒有
.則稱函數
為“理想函數”,則下列三個函數中:
(1),
(2),
(3).
稱為“理想函數”的有 (填序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以直角坐標系xOy中,直線l:y=x,圓C: (φ為參數),以坐標原點為為極點,x軸的正半軸為極軸建立極坐標系. (Ⅰ)求直線l與圓C的極坐標方程;
(Ⅱ)設直線l與圓C的交點為M,N,求△CMN的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在區間[a,b]上的連續函數y=f(x),如果,使得
,則稱
為區間[a,b]上的“中值點”.
下列函數:①;②
;③
;④
中,在區間[0,1]上“中值點”多于一個的函數序號為_________.(寫出所有滿足條件的函數的序號)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近期,濟南公交公司分別推出支付寶和微信掃碼支付乘車活動,活動設置了一段時間的推廣期,由于推廣期內優惠力度較大,吸引越來越多的人開始使用掃碼支付.某線路公交車隊統計了活動剛推出一周內每一天使用掃碼支付的人次,用表示活動推出的天數,
表示每天使用掃碼支付的人次(單位:十人次),統計數據如表
所示:
根據以上數據,繪制了散點圖.
(1)根據散點圖判斷,在推廣期內, 與
(
均為大于零的常數)哪一個適宜作為掃碼支付的人次
關于活動推出天數
的回歸方程類型?(給出判斷即可,不必說明理由);
(2)根據(1)的判斷結果及表中的數據,建立
關于
的回歸方程,并預測活動推出第
天使用掃碼支付的 人次;
(3)推廣期結束后,車隊對乘客的支付方式進行統計,結果如下
車隊為緩解周邊居民出行壓力,以萬元的單價購進了一批新車,根據以往的經驗可知,每輛車每個月的運營成本約為
萬元.已知該線路公交車票價為
元,使用現金支付的乘客無優惠,使用乘車卡支付的乘客享受
折優惠,掃碼支付的乘客隨機優惠,根據統計結果得知,使用掃碼支付的乘客中有
的概率享受
折優惠,有
的概率享受
折優惠,有
的概率享受
折優惠.預計該車隊每輛車每個月有
萬人次乘車,根據給數據以事件發生的頻率作為相應事件發生的概率,在不考慮其它因素的條件下,按照上述收費標準,假設這批車需要
年才能開始盈利,求
的值.
參考數據:
其中其中
參考公式:
對于一組數據,其回歸直線
的斜率和截距的最小二乘估計公式分別為:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com